Studia Geophysica et Geodaetica

, Volume 37, Issue 1, pp 1–13 | Cite as

Parameters of the Earth's tri-axial level ellipsoid

  • Milan Burša
  • Vladimíra Fialová
Article

Summary

Four parameters defining the Earth's tri-axial ellipsoid (E) have been derived on the basis of the condition that the gravity potential on E be constant and equal to the actual geopotential value (W0) on the geoid. The geocentric gravitational constant, the angular velocity of the Earth's rotation, the actual 2nd degree geopotential Stokes parameters and W0 are taken to be the primary geodetic constants defining E and its (normal) gravity field.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Pizzetti: Sulla espressione della gravita alla superficie del geoide, supposto elli soidico. Atti R. Accad. Lincei, Ser. V, v.3 (1894), 166.Google Scholar
  2. [2]
    M. B. Zadro, A. Marussi: On the static effect of Moon and Sun on the shape of the Earth. In: ATTI Proceedings V Simposio sulla Geodesia Matematics, Firenze, 25–26 Ottobre 1972, Firenze 1973, 249–267.Google Scholar
  3. [3]
    M. Burša, Z. Šíma, J. Kostelecký: Determination of the geopotential scale factor from satellite altimetry. Studia geoph. et goed.,36 (1992), 101–108.Google Scholar
  4. [4]
    J. C. Ries, R. J. Eanes, C. Huang, B. E. Schutz, C. K. Shum, B. D. Tapley, M. M. Watkings, D. N. Yuan: Determination of the Gravitational Coefficient of the Earth from Near-Earth Satellites. Geophys. Res. Letters,16 (1989), 271–274.Google Scholar
  5. [5]
    J. G. Marsch, F. J. Lerch, B. H. Putney, T. L. Felsentreger, B. V. Sanchez, S. M. Klosko, G. B. Patel, J. W. Robbins, R. G. Williamson, T. L. Engelis, W. F. Eddy, N. L. Chandler, D. S. Chinn, S. Kapoor, K. E. Rachlin, L. E. Braatz, E. C. Pavlis: The GEM-T2 Gravitational Model. J. Geophys. Res.,95 (1990), 22043–22071.Google Scholar
  6. [6]
    Report of IAG SSG 5-100. Parameters of Common Relevance of Astronomy, Geodesy, and Geodynamics. Bull. Géod.,66 (1992), 193–197.Google Scholar

Copyright information

© StudiaGeo s.r.o 1993

Authors and Affiliations

  • Milan Burša
    • 1
  • Vladimíra Fialová
    • 2
  1. 1.Astronomical InstituteAcad. Sci. Czech RepublicPrague
  2. 2.Czech Technical UniversityPrague

Personalised recommendations