Advertisement

Nudibranch life cycles in the Northwest Atlantic and their relationship to the ecology of fouling communities

  • K. B. Clark
Article

Summary

  1. 1.

    The most abundant nudibranchs in southern New England are small aeolids and sacoglossans. These gastropods are characteristically sub-annual species with asynchronous growth, continuous egg production and recruitment. Growth of individuals is notably rapid for molluscs, and is probably related to the possession of cerata, which appear to be an adaptation permitting increased rates of assimilation and metabolism. These characteristics represent adaptations to transient food sources which appear early in the microsuccession of fouling communities. Larger species, almost entirely dorids, have slower growth, restricted periods of egg production, synchronous growth cycles, and lower metabolic rates. These feed on more stable, longlived food sources characteristic of later successional stages.

     
  2. 2.

    The cerata represent convergent adaptations in four major taxa (Sacoglossa, Dendronotacea, Arminacea, and Aeolidacea) permitting an increase in growth and nonhomeostatic respiration. This is accomplished by an increase in both respiratory and digestive surface area.

     
  3. 3.

    The major component of recruitment of nudibranch populations is due to allochthonously-produced larvae. This may be of great value in repopulation of areas similar to southern New England, where temperature instability may preclude survival of a population for more than a few months.

     
  4. 4.

    High thermal sensitivity is characteristic of most nudibranchs of the western Atlantic, as indicated by high Q10 values. This sensitivity does not always cause mortality in natural populations, but is related to the rapid changes in population activity, and may represent a further adaptation to prey-species' life cycles. The interaction of high thermal sensitivity and a wide environmental temperature range, however, does limit the zoogeographic ranges and accounts for the low species diversity of the west Atlantic littoral fauna. Thermal sensitivity also explains the scarcity of intertidal species in southern New England, and accounts for the vernal disappearance of a few species.

     
  5. 5.

    Most species have type 1 (planktotrophic) development, which is of value in dispersal to and exploitation of new fouling growths. Some evidence is given that the proportion of type 1 development is higher in the western Atlantic than in the eastern Atlantic, which may relate to a greater instability of food species.

     
  6. 6.

    The widely-reported sudden appearances of populations are due to arrival of large numbers of larvae, followed by rapid growth to visible size. A critical temperature may stimulate settling and metamorphosis.

     
  7. 7.

    Sudden disappearances of adult populations are due to several causes. Small exploitist species normally overgraze food supplies following peak recruitment periods. This leads to destruction of the microhabitat and reduction of absolute population size, with apparent disappearance of individuals. Annual species normally die following periods of egg production, probably due to physiological weakening caused by extreme gonad output.

     

Keywords

Gastropoda Fouling Community Synchronous Growth Littoral Fauna High Thermal Sensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Lebenszyklen von Nudibranchiern aus dem Nordost-Atlantik und ihre Beziehung zur Ökologie von Aufwuchsorganismen

Kurzfassung

Die Lebenszyklen zahlreicher Nudibranchia-und Saccoglossa-Arten (Gastropoda) aus dem Nordwest-Atlantik werden vergleichend untersucht. Die meisten Species (Vertreter der Aeolidia und Saccoglossa) erzeugen zwei oder mehrere, sich überlappende Generationen pro Jahr. Sie werden früher geschlechtsreif und sind durch kontinuierliche Eiproduktion, rasches Wachstum, geringe Maximalgröße und hohe Stoffwechselintensitäten charakterisiert. Außerdem besitzen sie Dorsalpapillen mit Leberdivertikeln (Cerata) und ernähren sich von Hydroiden und Algen, die charakteristische Glieder früher Stadien der Aufwuchs-Lebensgemeinschaften darstellen. Eine kleinere Gruppe von Species (vorwiegend Doridacea) umfaßt dagegen Formen, die jährlich nur einmal Nachkommen hervorbringen sowie größere Körpermaße und relativ niedrigere Stoffwechselraten aufweisen. Sie ernähren sich vorwiegend von Bryozoen, deren Auftreten in der Artensukzession späte Stadien dieser Lebensgemeinschaften kennzeichnet. Verschiedene populationsdynamische Aspekte werden erörtert. Für das plötzliche Verschwinden der einzelnen Populationen sind mehrere Faktoren verantwortlich. Die kleineren Formen können bestimmte Mikrohabitate durch zu starkes Abweiden zerstören, während die größeren Formen bei der sehr rasch sich vollziehenden, totalen Entleerung der Geschlechtsprodukte zugrunde gehen. Das oft beobachtete unvermittelte Erscheinen derartiger Populationen beruht auf dem Auftreten zahlreicher, metamorphosebereiter Larven und dem raschen Wachstum der Jungtiere. Möglicherweise hängt auch das Ansetzen und die Metamorphose der Larven von dem Erreichen eines kritischen Temperaturniveaus ab. Die hohe Temperaturempfindlichkeit der meisten Nudibranchia erklärt, weshalb sie im Artenspektrum der Litoralfauna des Nordwest-Atlantik, wo beträchtliche Temperatur-Unterschiede auftreten, einen relativ geringen Anteil haben.

Literature cited

  1. Alder, J. &Hancock, A., 1845–1855. A monograph of the British nudibranchiate Mollusca. Ray Soc., London, 369 pp.Google Scholar
  2. Balch, F. N., 1908. Two interesting New England nudibranch records. Nautilus22, 13.Google Scholar
  3. Bayer, F. M., 1963. Observations on pelagic mollusks associated with the siphonophoresVelella andPhysalia. Bull. mar. Sci. Gulf Caribb.13, 454–466.Google Scholar
  4. Bělehrádek, J., 1935. Temperature and living matter. Borntraeger, Berlin, 229 pp. (Protoplasma-Monographien. Vol. 8.)Google Scholar
  5. Bleakney, J. S. &Bailey, K. H., 1967. Rediscovery of the saltmarsh sacoglossanAlderia modesta Loven in eastern Canada. Proc. malac. Soc. Lond.37, 347–349.Google Scholar
  6. Chambers, L. A., 1934. Studies on the organs of reproduction in the nudibranchiate mollusks, with special reference toEmbletonia fuscata Gould. Bull. Am. Mus. nat. Hist.66, 599–641.Google Scholar
  7. Clark, K. B., 1971. Construction of a collecting device for small aquatic organisms and a method for rapid weighing of small invertebrates. Veliger13, 364–367.Google Scholar
  8. —— &Franz, D. R., 1969. Occurrence of the sacoglossan opisthobranchHermaea dendritica Alder &Hancock in New England. Veliger12, 174–175.Google Scholar
  9. Costello, D. P., 1938. Notes on the breeding habits of the nudibranchs of Monterey Bay and vicinity. J. Morph.63, 319–381.Google Scholar
  10. Darnell, R., 1970. Evolution and the ecosystem. Am. Zool.10, 9–15.Google Scholar
  11. Du Bois-Reymond Marcus, E., 1972. Notes on some opisthobranch gastropods from the Chesapeake Bay. Chesapeake Sci.13, 300–317.Google Scholar
  12. Emlen, J. M., 1973. Ecology: an evolutionary approach. Addison-Wesley, Reading, Mass., 493 pp.Google Scholar
  13. Franz, D. R., 1970. Zoogeography of northwest Atlantic opisthobranch molluscs. Mar. Biol.7, 171–180.Google Scholar
  14. —— &Clark, K. B., 1972. A discussion of the systematics, reproductive biology, and zoogeography ofPolycerella emertoni and related species. Veliger14, 265–270.Google Scholar
  15. Gonor, J. J., 1966. Feeding. In: Marine Biology. Ed. byW. J. Edmondson. N. Y. Acad. Sci., New York,3, 1–313.Google Scholar
  16. Grave, B. H., 1930. Natural History ofBugula flabellata at Woods Hole, Massachusetts. J. Morph.49, 355–383.Google Scholar
  17. Greene, R. W., 1970. Symbiosis in sacoglossan opisthobranchs: functional capacity of symbiotic chloroplasts. Mar. Biol.7, 138–142.Google Scholar
  18. Haderlie, E. C., 1969. Marine fouling and boring organisms in Monterey Harbor-II. Second year of investigation. Veliger12, 182–192.Google Scholar
  19. Hadfield, M. G., 1963. The biology of nudibranch larvae. Oikos14, 85–95.Google Scholar
  20. Hopkins, S. H., 1957. Parasitism. In: Treatise on marine ecology and paleoecology. Ed. byJ. Hedgpeth. Geol. Soc. Am., New York,1, 413–428 (Mem. Geol. Soc. Am. 67).Google Scholar
  21. Huvé, P., 1953. Etude experimentale du peuplement de surfaces rocheuses immergees, en Mediterranee occidentale. C. r. hebd. Séanc. Acad. Sci., Paris236, 419–422.Google Scholar
  22. Hyman, L., 1967. The invertebrates. McGraw Hill, New York,6, 1–792.Google Scholar
  23. Kepner, W., 1943. The manipulation of the nematocysts ofPennaria tiarella byAeolis pilata. J. Morph.73, 297–311.Google Scholar
  24. Lance, J. R., 1961. A distributional list of southern California opisthobranchs. Veliger4, 65–69.Google Scholar
  25. Lemche, H., 1938.Gastropoda Opisthobranchiata. Zoology Iceland4 (61), 1–54.Google Scholar
  26. —— 1941.Gastropoda Opisthobranchiata. The Godthaab expedition 1928. Meddr. Grønland121 (7), 1–65.Google Scholar
  27. Loveland, R. E., Hendler, G. &Newkirk, G., 1969. New records of nudibranchs from New Jersey. Veliger11, 418–420.Google Scholar
  28. MacArthur, R., 1955. Fluctuations of animal populations, and a measure of community stability. Ecology36, 533–536.Google Scholar
  29. MacDougall, K. D., 1943. Sessile marine invertebrates of Beaufort, North Carolina. Ecol. Monogr.13, 323–374.Google Scholar
  30. Marcus, E., 1956. On two sacoglossan slugs from Brazil. Am. Mus. Novit.1796, 1–21.Google Scholar
  31. —— 1961a. Opisthobranchia from North Carolina. J. Elisha Mitchell scient. Soc.77, 141–151.Google Scholar
  32. —— 1961b. Opisthobranch mollusks from California. Veliger3 (Suppl.), 1–84.Google Scholar
  33. —— &Du Bois-Reymond, E., 1970. Opisthobranchs from Curacao and faunistically related regions. Stud. Fauna Curaçao33, 1–129.Google Scholar
  34. Mileikovsky, S. A., 1960. About the range of dispersal of pelagic larvae of bottom invertebrates with marine currents. Dokl. Akad. Nauk. SSSR,135.Google Scholar
  35. Millar, R. H., 1971. The biology of ascidians. Adv. mar. Biol.9, 1–101.Google Scholar
  36. Miller, M. C., 1961. Distribution and food of the nudibranchiate Mollusca of the south of the Isle of Man. J. Anim. Ecol.30, 95–116.Google Scholar
  37. —— 1962. Annual cycles of some Manx nudibranchs, with a discussion of the problem of migration. J. Anim. Ecol.31, 545–569.Google Scholar
  38. Moore, H. B., 1939. The colonization of a new rocky shore at Plymouth. J. Anim. Ecol.8, 29–38.Google Scholar
  39. Morse, M., 1909. The autonomy of the hydranth ofTubularia. Biol. Bull. mar. biol. Lab., Woods Hole16, 172–182.Google Scholar
  40. Morse, M. P., 1968. Functional morphology of the digestive system of the nudibranch molluscAcanthodoris pilosa. Biol. Bull. mar. biol. Lab., Woods Hole134, 305–319.Google Scholar
  41. —— 1969. Contributions to the knowledge of New England nudibranchs. A. Rep. Am. malac. Union,1969, 18.Google Scholar
  42. Nybakken, J., 1974. A phenology of the smaller dendronotacean, arminacean and aeolidacean nudibranchs at Asilomar State Beach over a twentyseven month period. Veliger16, 370–373.Google Scholar
  43. Orton, J. H., 1914. Preliminary account of a contribution to an evaluation of the sea: the life history ofGalvina picta. J. mar. biol. Ass. U. K.10, 323–324.Google Scholar
  44. Potts, G. W., 1970. The ecology ofOnchidoris fusca (Nudibranchia). J. mar. biol. Ass. U. K.50, 269–292.Google Scholar
  45. Rao, K. V., 1937. Structure, habits, and early development of a new species ofStiliger Ehrenberg. Rec. Indian Mus.39, 435–464.Google Scholar
  46. Rasmussen, E., 1944. Faunistic and biological notes on marine invertebrates I. Vidensk. Meddr dansk naturh. Foren.107, 207–233.Google Scholar
  47. Renn, C. E., 1936. The wasting disease ofZostera marina I. A phytological investigation of the diseased plant. Biol. Bull. mar. biol. Lab., Woods Hole70, 148–158.Google Scholar
  48. Risso-Dominguez, C. J., 1963. Measuring nudibranchs: A standardization for descriptive purposes. Proc. malac. Soc. Lond.35, 193–302.Google Scholar
  49. Robilliard, G., 1971. The systematic and some aspects of the ecology of the genusDendronotus. Veliger12, 433–479.Google Scholar
  50. Russell, H. D., 1964. New England nudibranch notes. Nautilus78, 37–42.Google Scholar
  51. Sanders, H. L., 1968. Marine benthic diversity: a comparative study. Am. Nat.102, 243–282.Google Scholar
  52. —— 1969. Benthic marine diversity and the stability-time hypothesis. Brookhaven Symp. Biol.22, 71–81.Google Scholar
  53. Scheer, B. T., 1945. The development of marine fouling communities. Biol. Bull. mar. biol. Lab., Woods Hole89, 103–121.Google Scholar
  54. Schmekel, L., 1968. Ascoglossa, Notaspidea und Nudibranchia im Litoral des Golfes von Neapel. Revue suisse Zool.75, 103–155.Google Scholar
  55. Smith, A. G. &Gordon, M., 1948. The marine molluscs and brachiopods of Monterey Bay, California, and vicinity. Proc. Calif. Acad. Sci. (Ser. 4)26, 147–245.Google Scholar
  56. Stebbing, A. R. D., 1971. The epizoic fauna ofFlustra foliacea. J. mar. biol. Ass. U. K.51, 283–300.Google Scholar
  57. —— 1973. Competition for space between the epiphytes ofFucus serratus. J. mar. biol. Ass. U. K.53, 247–261.Google Scholar
  58. Swennen, C., 1959. The Netherlands coastal waters as an environment for Nudibranchia. Basteria23 (Suppl.), 56–62.Google Scholar
  59. —— 1961. Data on distribution, reproduction, and ecology of the nudibranchiate molluscs occuring in the Netherlands. Neth. Jl Sea Res. 1191–1240.Google Scholar
  60. Thompson, T. E., 1958. The natural history, embryology, larval biology and post-larval development ofAdalaria proxima (Alder &Hancock) (Gastropoda Opisthobranchia). Phil. Trans. R. Soc. (B)242, 1–58.Google Scholar
  61. —— 1961a. The structure and mode of functioning of the reproductive organs ofTritonia hombergi (Gastropoda Opisthobranchia). Q. Jl microsc. Sci.102, 1–14.Google Scholar
  62. —— 1961b. Observations on the life history of the nudibranchOnchidoris muricata (Muller). Proc. malac. Soc. Lond.34, 239–242.Google Scholar
  63. —— 1964. Grazing and the life cycles of British nudibranchs. Symp. Br. ecol. Soc.4, 275–297.Google Scholar
  64. —— 1967. Direct development in a nudibranch,Cadlina laevis, with a discussion of developmental processes in Opisthobranchia. J. mar. biol. Ass. U. K.47, 1–22.Google Scholar
  65. Thorson, G., 1966. Some factors influencing the recruitment and establishment of marine benthic communities. Neth. Jl Sea Res.3, 267–293.Google Scholar
  66. Turner, C. H., Ebert, E. E. &Given, R. R., 1969. Man-made reef ecology. Fish Bull. Calif.146, 1–221.Google Scholar
  67. Winckworth, R., 1932. The British marine Mollusca. J. Conch., Lond.19, 211–252.Google Scholar
  68. —— 1951. A list of the marine Mollusca of the British Isles: Additions and corrections. J. Conch., Lond.23, 131–134.Google Scholar

Copyright information

© Biologischen Anstalt Helgoland 1975

Authors and Affiliations

  • K. B. Clark
    • 1
    • 2
  1. 1.University of Connecticut Marine Research LaboratoryNoankUSA
  2. 2.Biological Sciences DepartmentFlorida Institute of TechnologyMelbourneUSA

Personalised recommendations