Geometriae Dedicata

, Volume 49, Issue 2, pp 203–219 | Cite as

Isoperimetric inequalities for the fundamental groups of torus bundles over the circle

  • M. R. Bridson
  • Ch. Pittet
Article

Abstract

We give upper bounds for isoperimetric functions of semi-direct products
in terms of the asymptotic behaviour of ||Ak|| ask → ∞. In the caseA ∈ Sp(n, ℤ) we show that these bounds are sharp. This enables us to describe infinite families of nilpotent groups whose Dehn functions are bounded above and below by polynomials of degree the nilpotency class plus 1. We also recover the isoperimetric inequalities of cocompact lattices inNil andSol.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alonso, J. M., ‘Inégalités isopérimétriques et quasi-isométries’,C.R. Acad. Sci. Paris. Sér. 1 311 (1990), 761–764.Google Scholar
  2. 2.
    Alonso, J. M., Brady, T., Cooper, D., Ferlini, V. Lustig, M., Mihalik, M., Shapiro, M. and Short, H., ‘Notes on word hyperbolic groups’, inGroup Theory from a Geometric Viewpoint, World Scientific, Singapore, 1991.Google Scholar
  3. 3.
    Baumslag, G., Miller, C. F., III and Short, H., ‘Isoperimetric inequalities and the homology of groups’,Invent. Math. (to appear).Google Scholar
  4. 4.
    Bridson, M. R., ‘Combings of semidirect products and 3-manifold groups’,J. Geom. Funct. Anal. 3 (1993), 263–278.Google Scholar
  5. 5.
    Bridson, M. R., ‘On the geometry of normal forms in discrete groups’,Proc. London Math. Soc. (to appear).Google Scholar
  6. 6.
    Bridson, M. R. and Gersten, S. M., ‘The optimal isoperimetric inequality for ’, Preprint, University of Utah, August 1992.Google Scholar
  7. 7.
    Cannon, J. W., Epstein, D. B. A., Holt, D. F., Levy, S. V. F., Paterson, M. S. and Thurston, W. P.,Word Processing in Groups, Bartlett & Jones, Boston, Mass., 1992.Google Scholar
  8. 8.
    Gersten, S. M., ‘Dehn functions andl 1-norms of finite presentations’, inAlgorithmic Problems and Classification in Group Theory, Springer Verlag, MSRI Series, Vol. 23, 1992.Google Scholar
  9. 9.
    Gersten, S. M., ‘Isodiametric and isoperimetric inequalities in group extensions’, Preprint, University of Utah, 1991.Google Scholar
  10. 10.
    Gersten, S. M. and Short, H., ‘Small cancellation theory and automatic groups’,Invent. Math. 102 (1990), 305–334.Google Scholar
  11. 11.
    Gromov, M., ‘Asymptotic invariants of infinite groups’, Preprint, IHES, 1992.Google Scholar
  12. 12.
    Lyndon, R. C. and Schupp, P. E.,Combinatorial Group Theory, Ergeb. Math. Grenzgeb., Springer-Verlag, Berlin, 1977.Google Scholar
  13. 13.
    Miller, C. F., III, ‘Decision problems for groups-survey and reflections’, inAlgorithmic Problems and Classification in Group Theory, Springer-Verlag, MSRI Series, Vol. 23, 1992.Google Scholar
  14. 14.
    Scott, G. P., ‘The geometries of 3-manifolds’,Bull. London Math. Soc. Part 5, No. 56,15 (1983), 401–487.Google Scholar
  15. 15.
    Srebel, R., ‘Small cancellation groups’, inSur les groupes hyperboliques d'après M. Gromov. Progress in Math., Vol. 83, Birkhäuser, Boston, Mass., 1990, pp. 227–273.Google Scholar
  16. 16.
    Thurston, W. P., ‘Three dimensional manifolds, Kleinian groups and hyperbolic geometry’,Bull. Amer. Math. Soc. 6 (1982), 357–381.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • M. R. Bridson
    • 1
  • Ch. Pittet
    • 2
  1. 1.Department of Mathematics, Fine HallPrinceton UniversityPrincetonUSA
  2. 2.Section de MathématiquesUniversité de GenèveGenève 24Switzerland

Personalised recommendations