Advertisement

Communications in Mathematical Physics

, Volume 54, Issue 1, pp 1–19 | Cite as

The back reaction effect in particle creation in curved spacetime

  • Robert M. Wald
Article

Abstract

The problem of determining the changes in the gravitational field caused by particle creation is investigated in the context of the semiclassical approximation, where the gravitational field (i.e., spacetime geometry) is treated classically and an effective stress energy is assigned to the created particles which acts as a source of the gravitational field. An axiomatic approach is taken. We list five conditions which the renormalized stress-energy operatorTμv should satisfy in order to give a reasonable semiclassical theory. It is proven that these conditions uniquely determineTμv, i.e. there is at most one renormalized stress-energy operator which satisfies all the conditions. We investigate existence by examining an explicit “point-splitting” type prescription for renormalizingTμv. Modulo some standard assumptions which are made in defining the prescription forTμv, it is shown that this prescription satisfies at least four of the five axioms.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Effective Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashtekar, A., Geroch, R.: Rep. Prog. Phys.37, 1211 (1974)Google Scholar
  2. 2.
    Wald, R.: Commun. math. Phys.45, 9 (1975)Google Scholar
  3. 3.
    Hawking, S.W.: Commun. math. Phys.43, 199 (1975)Google Scholar
  4. 4.
    Hawking, S.W.: Phys. Rev. D14, 2460 (1976);Google Scholar
  5. 4a.
    Parker, L.: Phys. Rev. D12, 1519 (1975)Google Scholar
  6. 5.
    Bardeen, J.M., Carter, B., Hawking, S.W.: Commun. math. Phys.31, 161 (1973)Google Scholar
  7. 6.
    Bekenstein, J.D.: Phys. Rev. D9, 3292 (1974)Google Scholar
  8. 7.
    DeWitt, B.: Phys. Rep.19, 295 (1975)Google Scholar
  9. 8.
    Brown, L.: Phys. Rev. D15, 1469 (1977)Google Scholar
  10. 9.
    Dowker, J.S., Critchley, R.: Phys. Rev. D13, 3224 (1976);Google Scholar
  11. 9a.
    Dowker, J.S.: Conformal anomalies in quantum field theory (to be published);Google Scholar
  12. 9b.
    Hawking, S.W.: Commun. math. Phys. (in press)Google Scholar
  13. 10.
    Christensen, S.M.: Phys. Rev. D14, 2490 (1976)Google Scholar
  14. 11.
    Adler, S., Lieberman, J., Ng, Y.J.: Ann. Phys. (in press)Google Scholar
  15. 12.
    Parker, L., Fulling, S.A.: Phys. Rev. D9, 341 (1974)Google Scholar
  16. 13.
    Rumpf, H.: Covariant treatment of particle creation in curved spacetime (to be published)Google Scholar
  17. 14.
    Hartle, J., Hawking, S.W.: Phys. Rev. D13, 2188 (1976)Google Scholar
  18. 15.
    Candelas, P., Raine, D.J.: Phys. Rev. D15, 1494 (1977)Google Scholar
  19. 16.
    Wightman, A.S.: The Dirac equation. In: Aspects of quantum theory (eds. A. Salam, E. Wigner). Cambridge: University Press 1973Google Scholar
  20. 17.
    Hawking, S.W., Ellis, G.F.R.: The large scale structure of spacetime. Cambridge: University Press 1973Google Scholar
  21. 18.
    Davies, P.C.W., Fulling, S.A.: Radiation from moving mirrors and from black holes (to be published)Google Scholar
  22. 19.
    Woodhouse, N.: Phys. Rev. Lett.36, 999 (1976)Google Scholar
  23. 20.
    Garabedian, P.R.: Partial differential equations. New York: John Wiley and Sons, Inc. 1964Google Scholar
  24. 21.
    Christensen, S.M., Fulling, S.A.: Trace anomalies and the Hawking effect (to be published)Google Scholar
  25. 22.
    Davies, P.C.W., Fulling, S.A., Unruh, W.G.: Phys. Rev. D13, 2720 (1976)Google Scholar
  26. 23.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics, Vol. II. New York: Interscience Publishers 1962Google Scholar
  27. 24.
    Lovelock, D.: J. Math. Phys.13, 874 (1972)Google Scholar
  28. 25.
    Hadamard, J.: Lectures on Cauchy's problem in linear partial differential equations. New Haven: Yale University Press 1923Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Robert M. Wald
    • 1
  1. 1.Enrico Fermi InstituteUniversity of ChicagoChicagoUSA

Personalised recommendations