Communications in Mathematical Physics

, Volume 61, Issue 2, pp 97–118 | Cite as

Topological aspects of Yang-Mills theory

  • M. F. Atiyah
  • J. D. S. Jones
Article

Abstract

The space of mapsS3G has components which give the topological quantum number of Yang-Mills theory for the groupG. Each component of the space has further topological invariants. WhenG=SU(2) we show that these invariants (the homology groups) are “captured” by the space of instantons. Using these invariants we show that potentials must exist for which the massless Dirac equation (in Euclidean 4-space) has arbitrarily many independent solutions (for fixed instanton number).

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnol'd, V.I.: The cohomology ring of the coloured braid group. Math. Notes Acad. Sci. USSR5, 138–140 (1969)Google Scholar
  2. 2.
    Atiyah, M.F.:K-theory. New York: Benjamin 1967Google Scholar
  3. 3.
    Atiyah, M.F.: Bott periodicity and the index of elliptic operators. Quart. J. Math. (Oxford)19, 113–140 (1968)Google Scholar
  4. 4.
    Atiyah, M.F.: Geometry of Yang-Mills fields. Proc. Intern. Conf. Math. Physics, Rome 1977Google Scholar
  5. 5.
    Atiyah, M.F., Bott, R.: (to appear)Google Scholar
  6. 6.
    Atiyah, M.F., Drinfeld, V.G., Hitchin, N.J., Manin, Yu.I.: Construction of instantons. Phys. Lett.65, 185–187 (1978)Google Scholar
  7. 7.
    Atiyah, M.F., Hitchin, N., Singer, I.M.: Deformations of instantons. Proc. Nat. Acad. Sci.74, 2662–2663 (1977)Google Scholar
  8. 8.
    Atiyah, M.F., Hitchin, N., Singer, I.M.: Self-duality in four-dimensional Riemannian geometry. Proc. Roy. Soc. (to appear)Google Scholar
  9. 9.
    Atiyah, M.F., Singer, I.M.: The index of elliptic operators. I. Ann. Math.87, 484–530 (1968)Google Scholar
  10. 10.
    Atiyah, M.F., Singer, I.M.: The index of elliptic operators. IV. Ann. Math.93, 119–138 (1971)Google Scholar
  11. 11.
    Atiyah, I.M., Ward, R.S.: Instantons and algebraic geometry. Commun. math. Phys.55, 117–124 (1977)Google Scholar
  12. 12.
    Cohen, F.R., Lada, T.J., May, J.P.: The homology of iterated loop spaces. Lecture notes in mathematics, Vol. 533. Berlin-Heidelberg-New York: Springer 1976Google Scholar
  13. 13.
    Eells, J., Wood, J.C.: Restrictions on harmonic maps of surfaces. Topology15, 263–266 (1976)Google Scholar
  14. 14.
    Hartshorne, R.: Stable vector bundles and instantons. Commun. math. Phys.59, 1–15 (1978)Google Scholar
  15. 15.
    Jackiw, R., Rebbi, C., Nohl, C.: Conformal properties of pseudo-particle configurations. Phys. Rev. D15, 1642–1646 (1977)Google Scholar
  16. 16.
    Koschorke, U.: Infinite dimensionalK-theory and characteristic classes of Fredholm bundle maps. Proc. Symp. Pure Math.15, 95–133 (1970)Google Scholar
  17. 17.
    Segal, G.: Configuration spaces and iterated loop spaces. Inventiones math.21, 213–221 (1973)Google Scholar
  18. 18.
    Singer, I.M.: Some remarks on the Gribov ambiguity. Commun. math. Phys.60, 7–12 (1978)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • M. F. Atiyah
    • 1
  • J. D. S. Jones
    • 2
  1. 1.Mathematical InstituteUniversity of OxfordOxfordEngland
  2. 2.Magdalen CollegeOxfordEngland

Personalised recommendations