Inventiones mathematicae

, Volume 47, Issue 1, pp 85–99 | Cite as

On the structure of certain Galois groups

  • Ralph Greenberg


Galois Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brumer, A.: On the units of algebraic number fields. Mathematika14, 121–124 (1967)Google Scholar
  2. 2.
    Coates, J., Wiles, A.: Kummer's criterion for Hurwitz numbers. Proceedings of the International Conference on Algebraic Number Theory, Kyoto, Japan (1976)Google Scholar
  3. 3.
    Greenberg, R.: The Iwasawa invariants of Γ-extensions of a fixed number field. Amer. J. Math.XCV, 204–214 (1973)Google Scholar
  4. 4.
    Greenberg, R.: On the Iwasawa invariants of totally real number fields. Amer. J. Math.98, 263–284 (1976)Google Scholar
  5. 5.
    Greenberg, R.: Onp-adicL-functions and cyclotomic fields II. Nagoya Math. J.67, 139–158 (1977)Google Scholar
  6. 6.
    Harris, M.: Onp-adic representations arising from descent on abelian varieties. Harvard thesis (1977)Google Scholar
  7. 7.
    Iwasawa, K.: On Γ-extensions of algebraic number fields. Bull. Amer. Math. Soc.65, 183–226 (1959)Google Scholar
  8. 8.
    Iwasawa, K.: OnZ l-extensions of algebraic number fields. Ann. of Math.98, 246–326 (1973)Google Scholar
  9. 9.
    Serre, J.-P.: Classes de corps cyclotomiques. Sém. Bourbaki174 (1958)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Ralph Greenberg
    • 1
  1. 1.University of WashingtonSeattleUSA

Personalised recommendations