Communications in Mathematical Physics

, Volume 51, Issue 2, pp 163–182

A symplectic structure on the set of Einstein metrics

A canonical formalism for General Relativity
  • Wiktor Szczyrba
Article

Abstract

A symplectic structure i.e. a symplectic form Γ on the set of all solutions of the Einstein equations on a given 4-dimensional manifold is defined. A degeneracy distribution of Γ is investigated and its connection with an action of the diffeomorphism group is established. A multiphase formulation of General Relativity is presented. A superphase space for General Relativity is proposed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, R.: Foundations of mechanics. New York: Benjamin 1967Google Scholar
  2. 2.
    Adler, R., Bazin, M., Schiffer, M.: Introduction to general relativity. New York: McGraw Hill 1965Google Scholar
  3. 3.
    Arnowitt, R., Deser, S., Misner, C.W.: The dynamics of general relativity. In: Gravitation—an introduction to current research (Witten, L., ed.). New York: John Wiley 1962Google Scholar
  4. 4.
    Berger, M., Ebin, D.: J. Diff. Geometry3, 379–392 (1969)Google Scholar
  5. 5.
    Choquet-Bruhat, Y.: The Cauchy problem. In: Gravitation — an introduction to current research (Witten, L., ed.). New York: John Wiley 1962Google Scholar
  6. 6.
    Choquet-Bruhat, Y., Geroch, R.: Commun. math. Phys.14, 329–335 (1969)Google Scholar
  7. 7.
    Dedecker, P.: Calcul des variations, formes differentieles et champ geodesiques. In: Coll. Intern. Geometrie Diff. Strasbourg: Publications CNRS 1953Google Scholar
  8. 8.
    De Witt, B.: Phys. Rev.160, 1113–1148 (1967)Google Scholar
  9. 9.
    Dirac, P.A.M.: Proc. Roy. Soc. (London)A246, 333–346 (1958)Google Scholar
  10. 10.
    Ebin, D., Marsden, J.: Ann. Math.92, 102–163 (1970)Google Scholar
  11. 11.
    Fadeev, L.: Symplectic structure and quantization of the Einstein gravitation theory. In: Actes du Congres Int. des Math., Vol. 3, 35–39. Paris: Gauthier Villars 1970Google Scholar
  12. 12.
    Fischer, A.: The theory of superspaces. In: Relativity (Carmelli, M., Fickler, S., Witten, L., ed.). New York: Plenum Press 1970Google Scholar
  13. 13.
    Fischer, A., Marsden, J.: J. Math. Phys.13, 546–568 (1972)Google Scholar
  14. 14.
    Fischer, A., Marsden, J.: Commun. math. Phys.28, 1–38 (1972)Google Scholar
  15. 15.
    Gawedzki, K.: Reports Math. Phys.3, 307–326 (1972)Google Scholar
  16. 16.
    Goldschmidt, H., Sternberg, S.: Ann. Instit. Fourier23, 203–267 (1973)Google Scholar
  17. 17.
    Kijowski, J.: Commun. math. Phys.30, 99–128 (1973)Google Scholar
  18. 18.
    Kijowski, J., Szczyrba, W.: A canonical structure of classical field theories (to appear in Commun. math. Phys.)Google Scholar
  19. 19.
    Kobayashi, S., Nomizu, K.: Foundations of sifferential geometry, Vol. 1, Vol. 2. New York: Interscience Publ. 1963/1969Google Scholar
  20. 20.
    Lichnerowicz, A.: Relativistic hydrodynamics and magnetohydrodynamics. New York: Benajmin 1967Google Scholar
  21. 21.
    Narasimhan, R.: Analysis on real and complex manifold. Paris: Masson and Cie 1968Google Scholar
  22. 22.
    Souriau, J.M.: Structure des systemes dynamiques. Paris: Dunod 1969Google Scholar
  23. 23.
    Szczyrba, W.: Lagrangian formalism in the classical field theory. Ann. Pol. Math.32, 145–185 (1976)Google Scholar
  24. 24.
    Wheeler, J.A.: Geometrodynamics and the issue of the final state. In: Relativity, Groups and Topology (De Witt, B., De Witt, C., ed.). New York: Gordon and Breach 1964Google Scholar
  25. 25.
    Yano, K.: Integral formulas in Riemannian Geometry. New York: Marcel Dekker 1970Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Wiktor Szczyrba
    • 1
  1. 1.Institute of MathematicsPolish Academy of SciencesWarsawPoland

Personalised recommendations