Communications in Mathematical Physics

, Volume 46, Issue 3, pp 207–221 | Cite as

Integrable Hamiltonian systems and interactions through quadratic constraints

  • K. Pohlmeyer


O n -invariant classical relativistic field theories in one time and one space dimension with interactions that are entirely due to quadratic constraints are shown to be closely related to integrable Hamiltonian systems.


Neural Network Statistical Physic Field Theory Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ablowitz, M. J., Kaup, D. J., Newell, A. C., Segur, H.: Phys. Rev. Lett.31, 125 (1973)Google Scholar
  2. 2.
    Takhtadzhyan, L. A., Fadeev, L. D.: Teor. Mat. Fiz.21, 2 (1974)Google Scholar
  3. 3.
    Coleman, S.: Phys. Rev. D11, 2088 (1975)Google Scholar
  4. 4.
    Gardner, C. S., Green, J. M., Kruskal, M. D., Miura, R. M.: Phys. Rev. Lett.19, 1095 (1967)Google Scholar
  5. 5.
    Lax, P. L.: Commun. Pure Appl. Math.21, 467 (1968)Google Scholar
  6. 6.
    Weinberg, S.: Phys. Rev.166, 1568 (1968)Google Scholar
  7. 7.
    Goursat, E.: Memorial Sci. Math. Fasc. 6. Paris: Gauthiers-Villars 1925Google Scholar
  8. 8.
    See Lamb, G. L., Jr.: J. Math. Phys.15, 2157 (1974)Google Scholar
  9. 9.
    See e.g. Knobloch, H. W., Kappel, F.: Gewöhnliche Differentialgleichungen, Kapitel II, § 5. Stuttgart: Teubner 1974Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • K. Pohlmeyer
    • 1
  1. 1.II. Institut für Theoretische Physik der Universität HamburgHamburg 50Federal Republic of Germany

Personalised recommendations