Communications in Mathematical Physics

, Volume 52, Issue 1, pp 11–38

Dimensional renormalization and the action principle

  • P. Breitenlohner
  • D. Maison


Dimensional renormalization is defined in such a way that the renormalized action principle holds. It is shown that this leads to a minimal, additive renormalization. The derivation of Ward-Takahashi indentities and Callan-Symanzik equations from the action principle is exemplified.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    t'Hooft, G., Veltman, M.: Nucl. Phys. B44, 189 (1972)Google Scholar
  2. 2.
    Bollini, C. G., Giambiagi, J. J.: Phys. Letters40 B, 566 (1972)Google Scholar
  3. 2a.
    Cicuta, G. M., Montaldi, E.: Nuovo Cimento Letters4, 329 (1972)Google Scholar
  4. 3.
    Becchi, C., Rouet, A., Stora, R.: Broken Symmetries: Perturbation theory of renomalizable models. Lectures given at the International School of Elementary Particle Physics, Basco Polje, 1974Google Scholar
  5. 4.
    t'Hooft, G., Veltman, M.: Diagrammar, CERN Report 73/9Google Scholar
  6. 5.
    Hepp, K.: Renormalization theory in statistical mechanics and quantum field theory (Les Houches 1970), (C. de Witt, R. Stora eds.). New York: Gordon and Breach 1971Google Scholar
  7. 6.
    Speer, E. R.: J. Math. Phys.15, 1 (1974)Google Scholar
  8. 7.
    Collins, J. C.: Nucl. Phys. B92, 477 (1975)Google Scholar
  9. 8.
    Lam, Y. M. P.: Phys. Rev. D6, 2145 (1972)Google Scholar
  10. 9.
    Speer, E. R.: Generalized Feynman amplitudes. Princeton: Princeton University Press 1969Google Scholar
  11. 10.
    Speer, E. R., Westwater, M. J.: Ann. Inst. H. Poincaré14 A, 1 (1971)Google Scholar
  12. 11.
    Lowenstein, J. H.: Commun. math. Phys.24, 1 (1971)Google Scholar
  13. 12.
    Gelfand, I. M., Shilov, G. E.: Generalized functions, Vol. I. New York: Academic Press 1964Google Scholar
  14. 13.
    Bollini, C. G., Giambiagi, J. J.: Acta Phys. Acustriaca38, 211 (1973)Google Scholar
  15. 14.
    Zimmermann, W.: Commun. math. Phys.15, 208 (1969)Google Scholar
  16. 15.
    Lowenstein, J. H.: Seminars on Renormalization Theory, Vol. I., Maryland Technical Report 73–068 (1972)Google Scholar
  17. 16.
    Gomez, M., Lowenstein, J. H.: Phys. Rev. D7, 550 (1973)Google Scholar
  18. 17.
    Nakanishi, N.: Graph theory and Feynman integrals. New York: Gordon and Breach 1971Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • P. Breitenlohner
    • 1
  • D. Maison
    • 1
  1. 1.Max-Planck-Institut für Physik und AstrophysikMünchen 40Federal Republic of Germany
  2. 2.II. Institut für Theoretische Physik der Universität HamburgHamburg 50Federal Republic of Germany

Personalised recommendations