Communications in Mathematical Physics

, Volume 42, Issue 3, pp 281–305 | Cite as

Axioms for Euclidean Green's functions II

  • Konrad Osterwalder
  • Robert Schrader


We give new (necessary and) sufficient conditions for Euclidean Green's functions to have analytic continuations to a relativistic field theory. These results extend and correct a previous paper.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Constantinescu, F., Thalheimer, W.: Euclidean Green's functions for Jaffe fields. Commun. math. Phys.38, 299–316 (1974)Google Scholar
  2. 2.
    Epstein, H.: Some analytic properties of scattering amplitudes in quantum field theory. In: Chretien, M., Deser, S. (Eds.): Brandeis lectures 1965, Vol. I. New York: Gordon and Breach 1966Google Scholar
  3. 3.
    Fröhlich, J.: Schwinger functions and their generating functionals. Helv. Phys. Acta47, 265 (1974)Google Scholar
  4. 4.
    Gelfand, I.M., Shilov, G.E.: Generalized functions, Vol. II, p. 227. New York and London: Academic Press 1968Google Scholar
  5. 5.
    Glaser, V.: The positivity condition in momentum space. In: Problems of theoretical physics. Moscow: Nauka 1969Google Scholar
  6. 6.
    Glaser, V.: On the equivalence of the Euclidean and Wightman formulations of field theory. Commun. Math. Phys.37, 257 (1974)Google Scholar
  7. 7.
    Glimm, J., Jaffe, A.: A remark on the existence of ϕ44. Phys. Rev. Lett.33, 440–441 (1974)Google Scholar
  8. 8.
    Glimm, J., Jaffe, A., Spencer, T.: The Wightman axioms and particle structure in theP(ϕ)2 quantum field model. Ann. Math.100, 585 (1974)Google Scholar
  9. 9.
    Hörmander, L.: On the division of distributions by polynomials. Arkiv Mat.3, 555 (1958)Google Scholar
  10. 10.
    Mandelbrojt, S.: Séries adhérentes, régularisation des suites, applications. Paris: Gauthier-Villars 1952Google Scholar
  11. 11.
    Nelson, E.: Construction of quantum fields from Markoff fields. J. Funct. Anal.12, 97 (1973)Google Scholar
  12. 12.
    Osterwalder, K., Schrader, R.: Axioms for Euclidean Green's functions. Commun. math. Phys.31, 83 (1973)Google Scholar
  13. 13.
    Osterwalder, K.: Euclidean Green's functions and Wightman distributions. In: Velo, G., Wightman, A.S. (Eds.): Constructive quantum field theory, Lecture notes in physics. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  14. 14.
    Schwartz, L.: Théorie des distributions, p. 260. Paris: Hermann 1966Google Scholar
  15. 15.
    Simon, B.: Positivity of the Hamiltonian semigroup and the construction of Euclidean region fields. Helv. Phys. Acta46, 686 (1973)Google Scholar
  16. 16.
    Simon, B.: Private communicationGoogle Scholar
  17. 17.
    Simon, B.: Distributions and their hermite expansions. J. Math. Phys.12, 140 (1971)Google Scholar
  18. 18.
    Stein,M., Weiss,G.: Fourier analysis on Euclidean spaces, p. 38. Princeton University Press 1971Google Scholar
  19. 19.
    Velo, G., Wightman, A.S. (Eds.): Constructive quantum field theory, Lecture notes in physics. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  20. 20.
    Vladimirov, V.S.: Methods of the theory of functions of several complex variables. Cambridge and London: MIT Press 1966Google Scholar
  21. 21.
    Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc.36, 63 (1934)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Konrad Osterwalder
    • 1
  • Robert Schrader
    • 2
  1. 1.Jefferson Laboratory of PhysicsHarvard UniversityCambridgeUSA
  2. 2.Institut für Theoretische PhysikFreie Universität BerlinBerlin

Personalised recommendations