Communications in Mathematical Physics

, Volume 42, Issue 3, pp 281–305 | Cite as

Axioms for Euclidean Green's functions II

  • Konrad Osterwalder
  • Robert Schrader


We give new (necessary and) sufficient conditions for Euclidean Green's functions to have analytic continuations to a relativistic field theory. These results extend and correct a previous paper.


Neural Network Statistical Physic Field Theory Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Constantinescu, F., Thalheimer, W.: Euclidean Green's functions for Jaffe fields. Commun. math. Phys.38, 299–316 (1974)Google Scholar
  2. 2.
    Epstein, H.: Some analytic properties of scattering amplitudes in quantum field theory. In: Chretien, M., Deser, S. (Eds.): Brandeis lectures 1965, Vol. I. New York: Gordon and Breach 1966Google Scholar
  3. 3.
    Fröhlich, J.: Schwinger functions and their generating functionals. Helv. Phys. Acta47, 265 (1974)Google Scholar
  4. 4.
    Gelfand, I.M., Shilov, G.E.: Generalized functions, Vol. II, p. 227. New York and London: Academic Press 1968Google Scholar
  5. 5.
    Glaser, V.: The positivity condition in momentum space. In: Problems of theoretical physics. Moscow: Nauka 1969Google Scholar
  6. 6.
    Glaser, V.: On the equivalence of the Euclidean and Wightman formulations of field theory. Commun. Math. Phys.37, 257 (1974)Google Scholar
  7. 7.
    Glimm, J., Jaffe, A.: A remark on the existence of ϕ44. Phys. Rev. Lett.33, 440–441 (1974)Google Scholar
  8. 8.
    Glimm, J., Jaffe, A., Spencer, T.: The Wightman axioms and particle structure in theP(ϕ)2 quantum field model. Ann. Math.100, 585 (1974)Google Scholar
  9. 9.
    Hörmander, L.: On the division of distributions by polynomials. Arkiv Mat.3, 555 (1958)Google Scholar
  10. 10.
    Mandelbrojt, S.: Séries adhérentes, régularisation des suites, applications. Paris: Gauthier-Villars 1952Google Scholar
  11. 11.
    Nelson, E.: Construction of quantum fields from Markoff fields. J. Funct. Anal.12, 97 (1973)Google Scholar
  12. 12.
    Osterwalder, K., Schrader, R.: Axioms for Euclidean Green's functions. Commun. math. Phys.31, 83 (1973)Google Scholar
  13. 13.
    Osterwalder, K.: Euclidean Green's functions and Wightman distributions. In: Velo, G., Wightman, A.S. (Eds.): Constructive quantum field theory, Lecture notes in physics. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  14. 14.
    Schwartz, L.: Théorie des distributions, p. 260. Paris: Hermann 1966Google Scholar
  15. 15.
    Simon, B.: Positivity of the Hamiltonian semigroup and the construction of Euclidean region fields. Helv. Phys. Acta46, 686 (1973)Google Scholar
  16. 16.
    Simon, B.: Private communicationGoogle Scholar
  17. 17.
    Simon, B.: Distributions and their hermite expansions. J. Math. Phys.12, 140 (1971)Google Scholar
  18. 18.
    Stein,M., Weiss,G.: Fourier analysis on Euclidean spaces, p. 38. Princeton University Press 1971Google Scholar
  19. 19.
    Velo, G., Wightman, A.S. (Eds.): Constructive quantum field theory, Lecture notes in physics. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  20. 20.
    Vladimirov, V.S.: Methods of the theory of functions of several complex variables. Cambridge and London: MIT Press 1966Google Scholar
  21. 21.
    Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc.36, 63 (1934)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Konrad Osterwalder
    • 1
  • Robert Schrader
    • 2
  1. 1.Jefferson Laboratory of PhysicsHarvard UniversityCambridgeUSA
  2. 2.Institut für Theoretische PhysikFreie Universität BerlinBerlin

Personalised recommendations