Communications in Mathematical Physics

, Volume 50, Issue 1, pp 79–95

Infrared bounds, phase transitions and continuous symmetry breaking

  • J. Fröhlich
  • B. Simon
  • T. Spencer
Article

Abstract

We present a new method for rigorously proving the existence of phase transitions. In particular, we prove that phase transitions occur in (φ·φ)32 quantum field theories and classical, isotropic Heisenberg models in 3 or more dimensions. The central element of the proof is that for fixed ferromagnetic nearest neighbor coupling, the absolutely continuous part of the two point function ink space is bounded by 0(k−2). When applicable, our results can be fairly accurate numerically. For example, our lower bounds on the critical temperature in the three dimensional Ising (resp. classical Heisenberg) model agrees with that obtained by high temperature expansions to within 14% (resp. a factor of 9%).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beijeren, H. van, Sylvester, G.: Phase transitions for continuous spin ising ferromagnets, Yeshiva preprintGoogle Scholar
  2. 1A.
    Bortz, A., Griffiths, R.: Phase transitions in anisotropic classical Heisenberg ferromagnets. Commun. math. Phys.26, 102–108 (1972)Google Scholar
  3. 2.
    Coleman, S.: There are no Goldstone bosons in two dimensions. Commun. math. Phys.31, 259–264 (1973)Google Scholar
  4. 3.
    Dobrushin, R. L., Shlosman, S. B.: Absence of breakdown of continuous symmetry in two-dimensional models of statistical physics. Commun. math. Phys.42, 31–40 (1975)Google Scholar
  5. 4.
    Domb, C., Green, M.: Phase transitions and critical phenomena, Vol. 3, Series expansions for lattice models. New York-London: Academic Press 1974Google Scholar
  6. 5.
    Dunlop, F., Newman, C.: Multicomponent field theories and classical rotators. Commun. math. Phys.44, 223–235 (1975)Google Scholar
  7. 6.
    Ezawa, H., Swieca, A.: Spontaneous breakdown of symmetry and zero mass states. Commun. math. Phys.5, 330–336 (1967)Google Scholar
  8. 7.
    Feldman, J., Osterwalder, K.: The Wightman axioms and the mass gap for weakly coupled (φ4)3 quantum field theories. Ann. Phys., to appearGoogle Scholar
  9. 8.
    Feldman, J., Osterwalder, K.: in preparationGoogle Scholar
  10. 9.
    Fröhlich, J.: Schwinger functions and their generating functionals. I. Helv. Phys. Acta74, 265–306 (1974)Google Scholar
  11. 10.
    Fröhlich, J.: Existence and analyticity in the bare parameters of the λ(φ·φ)2—σφ12—μφ1 quantum field models; see Proc. Marseille Conf.Google Scholar
  12. 11.
    Fröhlich, J.: in preparation, see also 1976 Schladming Lecture NotesGoogle Scholar
  13. 12.
    Fröhlich, J., Simon, B.: Pure states for generalP(φ)2 Theories: Construction, regularity and variational equality, Princeton PreprintGoogle Scholar
  14. 13.
    Fröhlich, J., Simon, B., Spencer, T.: Phase transitions and continuous symmetry breaking. Phys. Rev. Letters36, 804 (1976)Google Scholar
  15. 14.
    Gallavotti, G., Miracle-Sole, S.: Equilibrium states of the Ising model in the two phase region. Phys. Rev.5B, 2555 (1972)Google Scholar
  16. 15.
    Ginibre, J.: Existence of phase transitions for quantum lattice systems. Commun. math. Phys.14, 205–234 (1969)Google Scholar
  17. 16.
    Glimm, J., Jaffe, A.: The λ(φ4)2 quantum field theory without cutoffs. IV. Perturbations of the Hamiltonian. J. Math. Phys.13, 1568–1584 (1972)Google Scholar
  18. 17.
    Glimm, J., Jaffe, A.: Energy-momentum spectrum and vacuum expectation values in quantum field theory. I. J. Math. Phys.11, 3335–3338 (1970)Google Scholar
  19. 18.
    Glimm, J., Jaffe, A.: φ24 quantum field model in the single phase region: Differentiability of the mass and bounds on critical exponents. Phys. Rev.D10, 536–539 (1974)Google Scholar
  20. 19.
    Glimm, J., Jaffe, A.: Positivity of the (φ4)3 Hamiltonian. Fortschr. Physik21, 327–376 (1973)Google Scholar
  21. 20.
    Glimm, J., Jaffe, A., Spencer, T.: Phase transitions for φ24 quantum fields. Commun. math. Phys.45, 203–216 (1975)Google Scholar
  22. 20A.
    Griffiths, R.: Phase transitions. In: Statistical mechanics and quantum field theory (ed. De Witt and Stora). New York-London: Gordon and Breach 1970Google Scholar
  23. 21.
    Guerra, F.: Proc. Marseille Conf. 1976 and Proc. Bielefeld Symposium, 1976Google Scholar
  24. 22.
    Guerra, F., Rosen, L., Simon, B.: Nelson's symmetry and the infinite volume behavior of the vacuum inP(φ)2. Commun. math. Phys.27, 10–22 (1972)Google Scholar
  25. 23.
    Guerra, F., Rosen, L., Simon, B.: TheP(φ)2 euclidean quantum field theory as classical statistical mechanics. Ann. Math.101, 111–259 (1975)Google Scholar
  26. 24.
    Herbst, I.: Some remarks on canonical quantum field theories. Princeton Preprint, 1976Google Scholar
  27. 25.
    Hohenberg, P.: Existence of long-range order in one and two dimensions. Phys. Rev.158, 383 (1967)Google Scholar
  28. 26.
    Kac, M.: On applying mathematics: Reflections and examples. Quart. Appl. Math.30, 17–29 (1972)Google Scholar
  29. 27.
    Källen, G.: On the definitions of the renormalization constants in quantum electrodynamics. Helv. Phys. Acta25, 417–434 (1952)Google Scholar
  30. 28.
    Katsura, S., Inawashiro, S., Abe, Y.: Lattice Green's functions for the simple cubic lattice in terms of a Mellin-Barnes type integral. J. Math. Phys.12, 895–899 (1971)Google Scholar
  31. 29.
    Kunz, H., Pfister, Ch.-Ed., Vuillermot, P. A.: Inequalities for some classical spin vector models. Bielefeld PreprintGoogle Scholar
  32. 30.
    Lee, T. D., Yang, C. N.: Statistical theory of equations of state and phase transitions. II. Lattice Gas and Ising Model. Phys. Rev.87, 410–419 (1952)Google Scholar
  33. 31.
    Lehmann, H.: Über Eigenschaften von Ausbreitungsfunktionen and Renormierungskonstanten quantisierter Felder. Nuovo Cimento11, 417–434 (1954)Google Scholar
  34. 32.
    Magnen, J., Seneor, R.: The infinite volume limit of the φ34 model. Ann. Inst. Henri Poincaré, to appearGoogle Scholar
  35. 33.
    Malyshev, S.: Phase transitions in classical Heisenberg ferromagnets with arbitrary parameter of anisotropy. Commun. math. Phys.40, 75–82 (1975)Google Scholar
  36. 34.
    Mermin, N. D.: Absence of ordering in certain classical systems. J. Math. Phys.8, 1061–1064 (1967)Google Scholar
  37. 35.
    Mermin, N. D., Wagner, H.: Absence of ferromagnetism or antiferromagnetism in one or two dimensional isotropic Heisenberg models. Phys. Rev. Letters17, 1133 (1966)Google Scholar
  38. 36.
    Park, Y.: Lattice approximation of the (λφ4 − μφ)3 field theory in a finite volume. J. Math. Phys.16, 1065 (1975)Google Scholar
  39. 37.
    Park, Y.: Uniform bounds on the pressure of the λφ34 model, and uniform bounds on the Schwinger functions in Boson field models. Bielefeld PreprintsGoogle Scholar
  40. 38.
    Pirogov, S. A., Sinai, Ya. G.: Phase transitions of the first kind for small perturbations of the ising model. Funct. Anal. Appl.8, 21–25 (1974)Google Scholar
  41. 39.
    Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. II, Fourier Analysis, Self-Adjointness. New York-London: Academic Press 1975Google Scholar
  42. 40.
    Robinson, D.: A proof of the existence of phase transitions in the anisotropic Heisenberg model. Commun. math. Phys.14, 195 (1969)Google Scholar
  43. 41.
    Ruelle, D.: Statistical mechanics. New York: Benjamin 1969Google Scholar
  44. 42.
    Seiler, E., Simon, B.: Nelson's symmetry and all that in the Yukawa2 and φ34 field theories. Ann. Phys. to appearGoogle Scholar
  45. 43.
    Simon, B.: Correlation inequalities and the mass gap inP(φ)2. II. Uniqueness of the vacuum in a class of strongly coupled theories. Ann. Math.101, 260–267 (1975)Google Scholar
  46. 44.
    Stanley, H.: Phys. Rev.176, 718 (1968)Google Scholar
  47. 45.
    Symanzik, K.: Commun. math. Phys.6, 228 (1967)Google Scholar
  48. 46.
    Watson, G. N.: Three triple integrals. Quart. J. Math.10, 266 (1939)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • J. Fröhlich
    • 1
  • B. Simon
    • 1
  • T. Spencer
    • 2
  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA
  2. 2.Department of MathematicsThe Rockefeller UniversityNew YorkUSA

Personalised recommendations