Advertisement

Communications in Mathematical Physics

, Volume 48, Issue 2, pp 119–130 | Cite as

On the generators of quantum dynamical semigroups

  • G. Lindblad
Article

Abstract

The notion of a quantum dynamical semigroup is defined using the concept of a completely positive map. An explicit form of a bounded generator of such a semigroup onB(ℋ) is derived. This is a quantum analogue of the Lévy-Khinchin formula. As a result the general form of a large class of Markovian quantum-mechanical master equations is obtained.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Explicit Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    George, C., Prigogine, I., Rosenfeld, L.: Kgl. Danske Videnskab. Selskab Mat.-Fys. Medd38, no 12 (1972)Google Scholar
  2. 2.
    Grecos, A. P., Prigogine, I.: Physica59, 77–96 (1972)Google Scholar
  3. 3.
    Williams, D. N.: Commun. math. Phys.21, 314–333 (1971)Google Scholar
  4. 4.
    Davies, E. B.: Commun. math. Phys.33, 171–186 (1973)Google Scholar
  5. 5.
    Davies, E. B.: Commun. math. Phys.39, 81–110 (1974)Google Scholar
  6. 6.
    Pulè, J. V.: Commun. math. Phys.38, 241–256 (1974)Google Scholar
  7. 7.
    Mehra, J., Sudarshan, E. C. G.: Nuovo Cimento11 B, 215–256 (1972)Google Scholar
  8. 8.
    Kossakowski, A.: Rep. Math. Phys.3, 247–274 (1972)Google Scholar
  9. 9.
    Ingarden, R. S., Kossakowski, A.: Ann. Phys.89, 451–485 (1975)Google Scholar
  10. 10.
    Phillips, R. S.: Pacific J. Math.5, 269–283 (1955)Google Scholar
  11. 11.
    Hille, E., Phillips, R. S.: Functional analysis and semigroups. Providence: Amer. Math. Soc. 1957Google Scholar
  12. 12.
    Dixmier, J.: Les algebres d'operateurs dans l'espace Hilbertien. Paris: Gauthier-Villars 1969Google Scholar
  13. 13.
    Stinespring, W. F.: Proc. Amer. Math. Soc.6, 211–216 (1955)Google Scholar
  14. 14.
    Feller, W.: An introduction to probability theory and its applications, vol. 2. New York: Wiley 1971Google Scholar
  15. 15.
    Arveson, W.: Acta. Math.123, 141–224 (1969)Google Scholar
  16. 16.
    Størmer, E.: Springer lecture notes in physics29, 85–106 (1974)Google Scholar
  17. 17.
    Choi, M. D.: Canadian J. Math.24, 520–529 (1972)Google Scholar
  18. 18.
    Kraus, K.: Ann. Phys.64, 311–335 (1970)Google Scholar
  19. 19.
    Sz.-Nagy, B., Foias, C.: Harmonic analysis of operators on Hilbert space. Amsterdam: North-Holland 1970Google Scholar
  20. 20.
    Russo, B., Dye, H. A.: Duke Math. J.33, 413–416 (1966)Google Scholar
  21. 21.
    Kadison, R. V.: Bull. London Math. Soc.7, 41–44 (1975)Google Scholar
  22. 22.
    Lumer, G., Phillips, R. S.: Pacific J. Math.11, 679–698 (1961)Google Scholar
  23. 23.
    Powers, R. T.: Ann. Math.86, 138–171 (1967)Google Scholar
  24. 24.
    Sakai, S.:C*-algebras andW*-algebras. Berlin, Heidelberg; New York: Springer 1971Google Scholar
  25. 25.
    Topping, D. M.: Lectures on von Neumann algebras. London: Van Nostrand 1971Google Scholar
  26. 26.
    Davies, E. B.: Z. Wahrscheinlichkeitstheorie verw. Geb.23, 261–273 (1972)Google Scholar
  27. 27.
    Davies, E. B.: Commun. math. Phys.15, 277–304 (1969);19, 83–105 (1970);22, 51–70 (1971)Google Scholar
  28. 28.
    Kossakowski, A.: Bull. Acad. Polon. Sci. Ser. math. astr. et phys.21, 649–653 (1973)Google Scholar
  29. 29.
    Kossakowski, A.: Bull. Acad. Polon. Sci. Ser. math. astr. et phys.20, 1021–1025 (1972)Google Scholar
  30. 30.
    Haken, H.: Handb. Phys.25, 2c. Berlin, Heidelberg, New York: Springer 1970Google Scholar
  31. 31.
    Zwanzig, R.: Physica30, 1109–1123 (1964)Google Scholar
  32. 32.
    Emch, G. C., Sewell, G. L.: J. Math. Phys.9, 846–958 (1968)Google Scholar
  33. 33.
    Haake, F.: Springer Tracts Mod. Phys.66, 98–168 (1973)Google Scholar
  34. 34.
    Gorini, V., Kossakowski, A., Sudarshan, E. C. G.: Preprint CPT 244, U. of Texas, AustinGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • G. Lindblad
    • 1
  1. 1.Department of Theoretical PhysicsRoyal Institute of TechnologyStockholm 70Sweden

Personalised recommendations