Communications in Mathematical Physics

, Volume 48, Issue 2, pp 119–130 | Cite as

On the generators of quantum dynamical semigroups

  • G. Lindblad


The notion of a quantum dynamical semigroup is defined using the concept of a completely positive map. An explicit form of a bounded generator of such a semigroup onB(ℋ) is derived. This is a quantum analogue of the Lévy-Khinchin formula. As a result the general form of a large class of Markovian quantum-mechanical master equations is obtained.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    George, C., Prigogine, I., Rosenfeld, L.: Kgl. Danske Videnskab. Selskab Mat.-Fys. Medd38, no 12 (1972)Google Scholar
  2. 2.
    Grecos, A. P., Prigogine, I.: Physica59, 77–96 (1972)Google Scholar
  3. 3.
    Williams, D. N.: Commun. math. Phys.21, 314–333 (1971)Google Scholar
  4. 4.
    Davies, E. B.: Commun. math. Phys.33, 171–186 (1973)Google Scholar
  5. 5.
    Davies, E. B.: Commun. math. Phys.39, 81–110 (1974)Google Scholar
  6. 6.
    Pulè, J. V.: Commun. math. Phys.38, 241–256 (1974)Google Scholar
  7. 7.
    Mehra, J., Sudarshan, E. C. G.: Nuovo Cimento11 B, 215–256 (1972)Google Scholar
  8. 8.
    Kossakowski, A.: Rep. Math. Phys.3, 247–274 (1972)Google Scholar
  9. 9.
    Ingarden, R. S., Kossakowski, A.: Ann. Phys.89, 451–485 (1975)Google Scholar
  10. 10.
    Phillips, R. S.: Pacific J. Math.5, 269–283 (1955)Google Scholar
  11. 11.
    Hille, E., Phillips, R. S.: Functional analysis and semigroups. Providence: Amer. Math. Soc. 1957Google Scholar
  12. 12.
    Dixmier, J.: Les algebres d'operateurs dans l'espace Hilbertien. Paris: Gauthier-Villars 1969Google Scholar
  13. 13.
    Stinespring, W. F.: Proc. Amer. Math. Soc.6, 211–216 (1955)Google Scholar
  14. 14.
    Feller, W.: An introduction to probability theory and its applications, vol. 2. New York: Wiley 1971Google Scholar
  15. 15.
    Arveson, W.: Acta. Math.123, 141–224 (1969)Google Scholar
  16. 16.
    Størmer, E.: Springer lecture notes in physics29, 85–106 (1974)Google Scholar
  17. 17.
    Choi, M. D.: Canadian J. Math.24, 520–529 (1972)Google Scholar
  18. 18.
    Kraus, K.: Ann. Phys.64, 311–335 (1970)Google Scholar
  19. 19.
    Sz.-Nagy, B., Foias, C.: Harmonic analysis of operators on Hilbert space. Amsterdam: North-Holland 1970Google Scholar
  20. 20.
    Russo, B., Dye, H. A.: Duke Math. J.33, 413–416 (1966)Google Scholar
  21. 21.
    Kadison, R. V.: Bull. London Math. Soc.7, 41–44 (1975)Google Scholar
  22. 22.
    Lumer, G., Phillips, R. S.: Pacific J. Math.11, 679–698 (1961)Google Scholar
  23. 23.
    Powers, R. T.: Ann. Math.86, 138–171 (1967)Google Scholar
  24. 24.
    Sakai, S.:C*-algebras andW*-algebras. Berlin, Heidelberg; New York: Springer 1971Google Scholar
  25. 25.
    Topping, D. M.: Lectures on von Neumann algebras. London: Van Nostrand 1971Google Scholar
  26. 26.
    Davies, E. B.: Z. Wahrscheinlichkeitstheorie verw. Geb.23, 261–273 (1972)Google Scholar
  27. 27.
    Davies, E. B.: Commun. math. Phys.15, 277–304 (1969);19, 83–105 (1970);22, 51–70 (1971)Google Scholar
  28. 28.
    Kossakowski, A.: Bull. Acad. Polon. Sci. Ser. math. astr. et phys.21, 649–653 (1973)Google Scholar
  29. 29.
    Kossakowski, A.: Bull. Acad. Polon. Sci. Ser. math. astr. et phys.20, 1021–1025 (1972)Google Scholar
  30. 30.
    Haken, H.: Handb. Phys.25, 2c. Berlin, Heidelberg, New York: Springer 1970Google Scholar
  31. 31.
    Zwanzig, R.: Physica30, 1109–1123 (1964)Google Scholar
  32. 32.
    Emch, G. C., Sewell, G. L.: J. Math. Phys.9, 846–958 (1968)Google Scholar
  33. 33.
    Haake, F.: Springer Tracts Mod. Phys.66, 98–168 (1973)Google Scholar
  34. 34.
    Gorini, V., Kossakowski, A., Sudarshan, E. C. G.: Preprint CPT 244, U. of Texas, AustinGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • G. Lindblad
    • 1
  1. 1.Department of Theoretical PhysicsRoyal Institute of TechnologyStockholm 70Sweden

Personalised recommendations