Advertisement

Communications in Mathematical Physics

, Volume 48, Issue 2, pp 97–118 | Cite as

Complex-dimensional invariant delta functions and lightcone singularities

  • Noboru Nakanishi
Article

Abstract

Invariant delta functions (including imaginary-mass case) defined in a complexn-dimensional space-time are explicitly calculated in position space. It is proposed to define products of invariant delta functions in the ordinary Minkowski space by analytically continuing the correspondingn-dimensional ones ton=4. The (not only leading but also non-leading) lightcone singularities of [Δ(x; m2)]2, Δ(x; m2(1)(x; m2), and [Δ(1)(x; m2)]2 are shown to be unambiguously determined in this way.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Delta Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    't Hooft, G., Veltman, M.: Nucl. Phys. B44, 189–213 (1972); Butera, P., Cicuta, G. M., Montaldi, E.: Nuovo Cimento19 A, 513–528 (1974). Further references are contained in the latterGoogle Scholar
  2. 2.
    Schwartz, L.: Théorie des Distributions, Paris: Herman & Cie. 1950Google Scholar
  3. 3.
    Nakanishi, N.: Progr. theoret. Phys. Suppl.51, 1–95 (1972)Google Scholar
  4. 4.
    Feinberg, G.: Phys. Rev.159, 1089–1105 (1967)Google Scholar
  5. 5.
    Frishman, Y.: Phys. Reports13, 1–52 (1974)Google Scholar
  6. 6.
    Nakanishi, N.: J. math. Phys.5, 1458–1473 (1964)Google Scholar
  7. 7.
    Wightman, A. S.: Unpublished; Tarski, J.: J. math. Phys.5, 1713–1722 (1964)Google Scholar
  8. 8.
    Sato, M.: J. Faculty of Science, Univ. of Tokyo8, 139–193 (1959);8, 387–437 (1960); Pham, F. (ed.): Hyperfunctions and Theoretical Physics, Berlin-Heidelberg-New York: Springer 1975Google Scholar
  9. 9.
    Erdélyi, A.: Higher Transcendental Functions, Vol. 2, New York-Toronto-London: McGraw-Hill 1953Google Scholar
  10. 10.
    Erdélyi, A.: Tables of Integral Transforms, Vols. 1 and 2, New York-Toronto-London: McGraw-Hill 1954Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Noboru Nakanishi
    • 1
  1. 1.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan

Personalised recommendations