Advertisement

Czechoslovak Journal of Physics B

, Volume 32, Issue 2, pp 183–192 | Cite as

Hypernuclear spectroscopy

Article

Conclusions

The main difference between theΛ- nucleus and the nucleon-nucleus interaction is in the spin dependence. The spin-spin and spin-orbit interaction is an order of magnitude weaker for theΛ-nucleus than for the nucleon-nucleus system. If we want to emphasize the difference between Λ hypernuclei and nuclei in an oversimplifying manner, we may say that the Λ particle in the nucleus behaves like a spinless neutron.

This radical difference in the behaviour ofΛ particles and nucleons in nuclear matter presents a sensitive test for the models of nuclear matter. Hypernuclear spectroscopy if studied in detail, a program just begun, promises to give valuable information on the effective properties of the quasiparticles in the nucleus and their interactions, both basic ingredients of nuclear models.

Rather surprisingly, hypernuclei live long enough to observe individual states, as can be deduced from the berylium results. These results should be verified as soon as possible. If they are confirmed, this will challenge experimentalists to determine the ∑-nucleus interaction in the same way as done forΛ particles and the theorists to explain why the strong decay of ∑ particles in the nucleus is hindered.

Keywords

Spectroscopy Sensitive Test Nuclear Matter Individual State Effective Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Povh B.:in Progress in Particle and Nuclear Physics, (ed. D. Wilkinson), Pergamon Press, 1981, p. 245.Google Scholar
  2. [2]
    Brückner W., Faessler M. A., Ketel T. J., Kilian K., Niewisch J., Pietrzyk B., Povh B., Ritter H. G., Uhrmacher M., Birien P., Catz H., Chaumeaux A., Durand J. M., Mayer B., Thirion J., Bertini R., Bing O.: Phys. Lett.79B (1978) 157.Google Scholar
  3. [3]
    Bertini R., Bing O., Birien P., Brückner W., Catz H., Chaumeaux A., Durand J. M., Faessler M. A., Ketel T. J., Kilian K., Mayer B., Niewisch J., Pietrzyk B., Povh B., Ritter H. G., Uhrmacher M.: Nucl. Phys., to be published.Google Scholar
  4. [4]
    Dalitz R. H., Gal A.: Phys. Lett B64 (1976) 154.Google Scholar
  5. [5]
    Epstein G. N., Tabakin F., Gal A., Kisslinger L. S.: Phys. Res. C17 (1978) 1501.Google Scholar
  6. [6]
    Bouyssy A.: Phys. Lett.84B (1979) 41.Google Scholar
  7. [7]
    Bertini R., Bing O., Birien P., Brückner W., Catz H., Chaumeaux A., Durand J. M., Faessler M. A., Ketel T. J., Kilian K., Mayer B., Niewisch J., Pietrzyk B., Povh B., Ritter H. G., Uhrmacher M.: Phys. Lett.83B (1979) 306.Google Scholar
  8. [8]
    Pauli E.: private communication.Google Scholar
  9. [9]
    Bertini R., Bing O., Birien P., Brückner W., Catz H., Chaumeaux A., Durand J. M., Faessler M. A., Garreta D., Ketel T. J., Kilian K., Mayer B., Pietrzyk B., Povh B., Ritter H. G., Uhrmacher M., Walcher T.: Phys. Lett.90B (1980) 375.Google Scholar

Copyright information

© Academia, Publishing House of the Czechoslovak Academy of Sciences 1982

Authors and Affiliations

  • B. Povh
    • 1
  1. 1.Max-Planck-Institut für KernphysikHeidelbergFRG

Personalised recommendations