Acta Biotheoretica

, Volume 11, Issue 1, pp 27–44 | Cite as

Polyploidy and the sex chromosomes

  • R. Ruggles Gates


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beatty, R. A. &M. Fischberg (1949). Spontaneous and induced triploidy in preimplantation mouse eggs. — Nature, Lond. CLXIII, p. 807–808.Google Scholar
  2. Blackburn, K. B. &J. W. H. Harrison (1924). A preliminary account of the chromosomes and chromosome behaviour in the Salicaceae. -Ann. Bot., Lond. XXXVIII, p. 361–379.Google Scholar
  3. Bole-Gowda, B. N. (1952). Studies on the chromosomes and the sex-determining mechanism in four hunting spiders (Sparassidae).-Proc. Zool. Soc. Bengal. V, p. 51–70.Google Scholar
  4. Darlington, C. D. (1953). Polyploidy in animals. — Nature, Lond. CLXXI, p. 191–194.Google Scholar
  5. Darlington, C. D. &L. F. La Cour (1950). Hybridity selections inCampanula. — Heredity IV, p. 217–248.Google Scholar
  6. Dutt, M. K. (1950). Studies on chromosome behavior and sex chromosome inChrotogonus sp. (Pyrgomorphinae, Acrididae). — Proc. Zool. Soc. Beng. III, p. 109–117.Google Scholar
  7. Fankhauser, G. (1941). Cell size, organ and body size in triploid newts (Triturus viridescens). — J. Morph. LXVI1I, p. 161–175.Google Scholar
  8. Fischberg, M. &R. A. Beatty (1950a). Experimentelle Herstellung von polyploiden Mausblastulae. — Arch. Klaus-Stift. VererbForsch. XXV, p. 54–55.Google Scholar
  9. (1950b). Anfänge einer genetischen Analyse der spontanen Heteroploidie bei Mäusen. -Arch. Klaus-Stift. VererbForsch. XXV, p. 22–27.Google Scholar
  10. Gates, R. R. (1926). Polyploidy and sex chromosomes. -Nature, Lond. CXVII, p. 234.Google Scholar
  11. (1939). Nucleoli, satellites and sex chromosomes. -Nature, Lond. CXLIV, P. 794–795.Google Scholar
  12. (1942a). Nucleoli and related nuclear structures. — Bot. Rev. VIII, p. 337–409.Google Scholar
  13. (1942b). Chromosome numbers in mammals and man. — Science XLVI, p. 336–337.Google Scholar
  14. (1942c). Some observations regarding the nucleolus and cytoplasm in living marine eggs. — Biol. Bull. Wood's Hole LXXXII, p. 47–51.Google Scholar
  15. (1946). Human genetics. 2 vols. — New York, Macmillan, 1518 p.Google Scholar
  16. Goldschmidt, E. (1953). Multiple sex-chromosome mechanisms and polyploidy in animals. -J. Genet. LI, p. 434–440.Google Scholar
  17. Grosch, D. S. (1952). The spinning glands of impaternate (male)Habrobracon larvae: morphology and cytology. — J. Morph. XCI, p. 221–236.Google Scholar
  18. Guénin, H. A. (1950). Chromosomes et hétérochromosomes de Ténébrionidés. — Genetica XXV, p. 157–182.Google Scholar
  19. (1952). Hétérochromosomes de Cicindàles. — Rev. suisse Zool. LIX, p. 277–282.Google Scholar
  20. Häggqvist, G. &A. Bane (1950a). Studies in triploid rabbits produced by colchicine. — Hereditas, Lund XXXVI, p. 329–334.Google Scholar
  21. (1950b). Chemical induction of polyploid breeds of mammals. — K. svenska VetenskAkad. Handl. 1 no. 10, p. 1–12.Google Scholar
  22. Harrison, J. W. H. (1926). Heterochromosomes and polyploidy. — Nature, Lond. CXVII, p. 50.Google Scholar
  23. Harvey, E. B. (1936). Parthenogenetic merogony or cleavage without nuclei inArbacia punctulata. — Biol. Bull. Wood's Hole LXXI, p. 101–121.Google Scholar
  24. Hay, E. D. (1950). The role of epidermis in amphibian regeneration as revealed by triploid and haploid transplants to diploid limbs. — Biol. Bull. Wood's Hole XCIX, P- 351–352.Google Scholar
  25. Hofmeyr, J. D. J. &H. v. Elden (1942). Tetraploidy inCarica papaya L. induced by colchicine. — S. Afr. J. Sci. XXXVIII, p. 181–185.Google Scholar
  26. Huskins, C. L. (1948). Chromosome multiplication and reduction in somatic tissues. — Nature, Lond. CLXI, p. 80–83.Google Scholar
  27. Huskins, C. L. &L. Chouinard (1950). Somatic reduction: Diploid and triploid roots and a diploid shoot from a tetraploidRhoeo. — Genetics XXXV, p. 115.Google Scholar
  28. LaCour, L. F. (1952). TheLuzula system analyzed by X-rays. — Heredity Suppl. VI, p. 77–81.Google Scholar
  29. Lindahl, P. E. (1953). Somatic reduction division in the development of the sea urchin. — Nature, Lond. CLXXI, p. 437–438.Google Scholar
  30. Lorch, I. J. &J. F. Danielli (1950). Transplantation of nuclei from cell to cell. — Nature, Lond. CLXVI, p. 329–330.Google Scholar
  31. Lorkovič, Z. (1941). Die Chromosomenzahlen in der Spermatogenese der Tagfalter. — Chromosoma II, p. 155–191.Google Scholar
  32. Löve, A. & D.Löve (1949). The geobotanical significance of polyploidy. I. Polyploidy and latitude. — Portug. acta biol., Goldschmidt Vol., p. 273–352.Google Scholar
  33. Makino, S. (1951). Chromosome numbers in animals. -Ames, Iowa College State Press, 290 p.Google Scholar
  34. Malheiros-Garde, N. &A. Garde (1950). Fragmentation as a possible evolutionary process in the genusLusula DC. — Genet. Ibirica II, p. 257–262.Google Scholar
  35. Matthey, R. (1938). Contribution nouvelle à l'étude des hétérochromosomes chez les mammifères et singulièrement chez les rongeurs. — J. Genet. XXXVI, p. 73–102.Google Scholar
  36. (1950). Les chromosomes sexuels géant deMicrotus agrestis L. — Cellule. LIII, 162–184.Google Scholar
  37. (1952). Chromosomes de Muridae. (Microtinae et Cricetinae). — Chromosoma V, p. 113–138.Google Scholar
  38. (1952a). Chromosomes de Muridae II — Experientia VIII, p. 389–390.Google Scholar
  39. Melander, Y. (1950). Chromosome behaviour of a triploid adult rabbit as produced byHäggqvist andBane after colchicine treatment. — Hereditas, Lund XXXVII, P. 335–341.Google Scholar
  40. (1951). Polyploidy after colchine treatment of pigs. — Hereditas, Lund XXXVII, p. 288–289.Google Scholar
  41. Michaelis, P. (1949). Über Abänderungen des plasmatischen Erbgutes. — Z. indukt. Abstamm.- u. VererbLehre LXXXIII, p. 36–85.Google Scholar
  42. Mizushima, U. (1950). On several artificial allopolyploids obtained in the tribe Brassiceae of Cruciferae. — Tohoku J. agric. Res. I, p. 15–27.Google Scholar
  43. Muldal, S. (1952). The chromosomes of the earthworms. I. The evolution of polyploidy. — Heredity VI, p. 55–76.Google Scholar
  44. Müntzing, A. (1933). Hybrid incompatibility and the origin of polyploidy. — Hereditas, Lund XVIII, p. 33–55.Google Scholar
  45. Narbel-Hofstetter, M. (1950). La cytologie de la parthénogenèse chezSolenobia sp. (Lichenella L. ?) (Lepidoptères, Psychides). — Chromosoma IV, p. 56–90.Google Scholar
  46. Oksala, T. (1943). Zytologische Studien an Odonaten. I. Chromosomenverhältnisse bei der GattungAeschna. — Ann. Acad. Sci. Fenn., Ser. A, no. 4, 63 p.Google Scholar
  47. Ownbey, M. (1950). Natural hybridisation and amphiploidy in the genusTragopogon. — Amer. J. Bot. XXXVII, p. 487–499.Google Scholar
  48. Parmenter, C. L. (1952). Diploid virgin frog eggs; a possible origin of diploid parthenogenetically developed frog larvae without delay in cleavage and of diploid larvae developed from fertilized eggs. — J. Morph. XC, p. 243–261.Google Scholar
  49. Piza, S. de Toledo (1949). “Ouro Preto” nova e interressante raça cromossomica deTityus bahiensis (Scorpions-Buthidae). — Sci. genet. III, p. 147–158.Google Scholar
  50. (1950). Breve noticia acêrca dos cromossômios deIschyra punctinervis Brunner ePhilophyllia guttulata Stal. (Orthoptera Phaneropteridae). — Folia clin. biol., S. Paulo XVI, p. 93–95.Google Scholar
  51. Rose, S. M. (1952). A hierarchy of self limiting reactions as the basis of cellular differentiation and growth control. — Amer. Nat. LXXXVI, p. 337–354.Google Scholar
  52. Sachs, L. (1952). Polyploid evolution and mammalian chromosomes. — Heredity VI, P. 357–364.Google Scholar
  53. Schuh, J. E. (1951). Some effects of colchicine on the metamorphosis ofCulex pipiens Linn. — Chromosoma IV, p. 456–469.Google Scholar
  54. Shasman, G. B. &H. M. Barber (1952). Multiple sex chromosomes in the marsupialPotorous. — Heredity VI, p. 345–355.Google Scholar
  55. Sharman, G. B., A. J. McIntosh &H. M. Barber (1950). Multiple sex chromosomes in the Marsupials. — Nature, Lond. CLXVI, p. 996.Google Scholar
  56. Sikka, S. M. (1940). Cytogenetics ofBrassica hybrids and species. — J. Genet. XL, p..441–509.Google Scholar
  57. Smith, S. G. (1949). Evolutionary changes in the sex chromosomes of Coleoptera. I. Wood borers of the genusAgrilus. — Evolution III, p. 344–357.Google Scholar
  58. (1950). The cyto-taxonomy of Coleoptera. — Canad. Ent. LXXXII, p. 58–68.Google Scholar
  59. (1952a). The cytology ofSitophilus (Calandra) oryzae (L.),S. granarius (L.), and some other Rhynchophora (Coleoptera). — Cytologia, Tokyo XVII, p. 50–70.Google Scholar
  60. (1952b). The evolution of heterochromatin in the genusTribolium (Tenebrionidae Coleoptera). — Chromosoma IV, p. 585–610.Google Scholar
  61. (1952c). The cytology of some tenebrionoid beetles (Coleoptera). — J. Morph. XCI, p. 325–363.Google Scholar
  62. Suomalainen, E. (1947). Parthenogenese und Polyploidie bei Rüsselkäfern (Curculionidae). — Hereditas, Lund XXXIII, p. 425–456.Google Scholar
  63. Suzuki, S. (1952). Cytological studies on spiders. II. Chromosomal investigation in the 22 species of spiders belonging to the four families Clubionidae, Sparassidae, Thomisidae and Oxypidae, which constitute Clubionidae, with special reference to sex chromosomes. — J. Sci. Hiroshima Univ., Ser. B., Div. I, XIII, p. 1–52.Google Scholar
  64. Svärdson, G. (1945). Chromosome studies on Salmonidae. — K. LandtbrStyr. Medd. XXIII, p. 1–151.Google Scholar
  65. Tatuno, S. (1951a). Weitere Untersuchungen über die Polyploidie und geographische Verbreitung beiDumortiera hirsuta. V. Verbreitung vonD. hirsuta in die Kalkgebieten in Japan und Formosa. — Bot. mag., Tokyo LXIV, p. 183–187.Google Scholar
  66. (1951b). Über die Chromosomen der Laubmoose, mit besonderer Rücksicht auf ihre Heterochromosomen. — La Kromosomo VIII, p. 305–310.Google Scholar
  67. (1952). Geschlechtschromosomen bei einigen Arten vonFrullania. — J. Sci. Hiroshima Univ., Ser. B, Div. 2, VI, p. 51–57.Google Scholar
  68. Timonen, S. (1950). Mitosis in normal endometrium in genital cancer. — Acta obstet. gynec. scand. XXXI, Suppl. 2, 88 p.Google Scholar
  69. Timonen, S. &E. Therman (1950). Variation of the somatic chromosome number in man. — Nature, Lond. CLXVI, p. 995–996.Google Scholar
  70. Vandel, A. (1937). Chromosome number, polyploidy and sex in the animal kingdom. — Proc. zool. Soc. Lond., Ser. A, p. 519–541.Google Scholar
  71. (1946). Le rôle de la polyploidie dans le règne animal. — Arch. Klaus-Stift. VererbForsch. XXI, p. 397–410.Google Scholar
  72. Westergaard, M. (1940). Studies on cytology and sex determination in polyploid forms ofMelandrium album. — Dansk. Bot. Ark. X, nr. 5, 131 p.Google Scholar
  73. Wilkinson, J. (1941). The cytology of the cricket bat willow (Salix alba var.caerulea). — Ann, Bot., Lond., N.S., V, p. 149–165.Google Scholar
  74. Winge, Ö. (1927). Zytologische Untersuchungen über die Natur maligner Tumoren, I. „Crown gall” der Zuckerrübe. — Z. Zellforsch. VI, p. 397–423.Google Scholar
  75. Wipf, L. &D. C. Cooper (1938). Chromosome numbers in nodules and roots of red clover, common vetch and garden pea. — Proc. nat. Acad. Sci., Wash. XXIV, p. 87–91.Google Scholar
  76. Yano, K. (1951). On the chromosomes in some mosses. I. — Bot Mag., Tokyo LXIV, p. 234–237.Google Scholar
  77. (1952). On the chromosomes in some mosses. II. — Bot. Mag., Tokyo LXV, p. 195–198.Google Scholar

Copyright information

© E. J. Brill 1956

Authors and Affiliations

  • R. Ruggles Gates
    • 1
  1. 1.Harvard UniversityCambridge

Personalised recommendations