Monatshefte für Mathematik

, Volume 96, Issue 3, pp 173–181 | Cite as

Homogeneously distributed sequences and Poincaré sequences of integers of sublacunary growth

  • Michael Boshernitzan


The sequence of integersn1<n2<n3<... is said to be homogeneously distributed if\(\mathop {\lim }\limits_{m \to + \infty } (1/m)\sum\limits_{k = 1}^m {\exp (2\pi in_k \alpha )} = 0\) for all non-integral real α. The existence of such sequences with a prescribed subexponential growth is shown, the recurrent properties of these sequences are discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Erdös, P., Taylor, S. J.: On the set of points of convergence of a lacunary trigonometric series and the equidistribution properties of related sequences. Proc. London Math. Soc. (3),7, 598–615 (1957).Google Scholar
  2. [2]
    Furstenberg, H.: Poincaré recurrence and number theory. Bull. Amer. Math. Soc.5, 211–234 (1981).Google Scholar
  3. [3]
    Furstenberg, H.: Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton, N. J.: Univ. Press. 1981.Google Scholar
  4. [4]
    Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. New York: Wiley-Interscience. 1974.Google Scholar
  5. [5]
    Karacuba, A. A.: Estimates for trigonometric sums. Proc. Steklov Inst.112, 251–265 (1971).Google Scholar
  6. [6]
    Niederreiter, H.: On a paper of Blum, Eisenberg and Hahn concerning ergodic theory and the distribution of sequences in the Bohr group. Acta Sci. Math.37, 103–108 (1975).Google Scholar
  7. [7]
    Pollington, A. D.: On the density of sequence {n k ζ}. Ill. J. Math.23, 151–155 (1979).Google Scholar
  8. [8]
    Veech, W. A.: Well distributed sequences of integers. Trans. Amer. Math. Soc.161, 63–70 (1971).Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Michael Boshernitzan
    • 1
  1. 1.Department of MathematicsRice UniversityHoustonUSA

Personalised recommendations