Czechoslovak Journal of Physics B

, Volume 28, Issue 10, pp 1164–1173 | Cite as

Spectra of europium-doped yttrium oxide and yttrium vanadate phosphors

  • M. S. Elmanharawy
  • A. H. Eid
  • A. Abdel Kader
Article

Abstract

The spectral distributions of the visible absorption and fluorescence emission under electron beam excitation of Eu3+-doped (Y2O3) and (YVO4) powders have been detected and analyzed. (Y2O3: Eu3+) has a cubicC crystal structure with a unit cell dimension a=10·61 Å. Its observed transitions from7F0 to many upper states have been recognized; the observed number of Stark components is in agreement with that based on theC2 site symmetry of the Eu3+ ion in Y2O3. Eu3+-doped yttrium vanadate has a typical zircon tetragonal crystal structure with unit cell dimensions ofc=6·29 Å anda=7·11 Å. The observed transitions in (Eu3+: YVO4) have been identified and assigned in accordance with theD2d site symmetry of the Eu3+ ion in this lattice.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Goos G., Hellwage K. H., Ann. Phys.39 (1941), 25.Google Scholar
  2. [2]
    Hellwage K. H., Nachr. Akad. Wiss. Goettingen, Math.-Physik, Kl. 1947 (1947), 37.Google Scholar
  3. [3]
    Judd B. R., Proc. Roy. Soc.A 228 (1955), 120.Google Scholar
  4. [4]
    Gobrecht H., Ann. Phys.28 (1937), 673.Google Scholar
  5. [5]
    Rinck B., Z. Naturforsch.3 (1948), 406.Google Scholar
  6. [6]
    Hellwage K. H., Ann. Phys.4 (1948), 127;4 (1948), 136;4 (1948), 143;4 (1949), 357.Google Scholar
  7. [7]
    Sayre E. V., Freed S., J. Chem. Phys.24 (1955), 1213.Google Scholar
  8. [8]
    DeShazer L. G., Dieke G. H., J. Chem. Phys.39 (1963), 2190.Google Scholar
  9. [9]
    Koningstien J. A., Phys. Rev.136 (1964), A 717; J. Chem. Phys.42 (1965), 3195.Google Scholar
  10. [10]
    Judd B. R., Mol. Phys.2 (1959), 407.Google Scholar
  11. [11]
    Briffaut J., Compt. Rend.262 (1966), 562.Google Scholar
  12. [12]
    Hellwage K. H., Johnson U., Kahle H. G., Schaack G. S., Z. Phys.148 (1957), 112.Google Scholar
  13. [13]
    Kahle H. G., Z. Phys.155 (1959), 129, 145, 157.Google Scholar
  14. [14]
    Ofelt G. S., J. Chem. Phys.38 (1963), 2171.Google Scholar
  15. [15]
    Chang N. C., J. Appl. Phys.34 (1963), 3500.Google Scholar
  16. [16]
    Chang N. C., Gruber J. B., J. Chem. Phys.41 (1964), 3227.Google Scholar
  17. [17]
    Brecher C., Samelson H., Lempiki A., Riley R., Peters T., Phys. Rev.155 (1967), 178.Google Scholar
  18. [18]
    Levine A. K., Palilla F. C., Appl. Phys. Letters6 (1964), 118.Google Scholar
  19. [19]
    Bril A., J. Electrochem. Soc.112 (1965), 111.Google Scholar
  20. [20]
    Pauling L., Z. Krist.75 (1930), 128.Google Scholar
  21. [21]
    Milligan W. O., Vernon L. W., J. Phys. Chem.56 (1952), 145.Google Scholar
  22. [22]
    Elmanharawy M. S., Eid A. H., U.A.R. J. Phys.2 (1971), 217.Google Scholar
  23. [23]
    Hersh H. N., Forest H., J. Luminescence1–2 (1970), 962.Google Scholar
  24. [24]
    Blasse G., Bril A., J. Chem. Phys.47 (1967), S 139.Google Scholar
  25. [25]
    Bethe H. A., Ann. Phys.5 (1929), 133.Google Scholar
  26. [26]
    Rosenberger D., Z. Phys.167 (1962), 360.Google Scholar

Copyright information

© Academia, Publishing House of the Czechoslovak Academy of Sciences 1978

Authors and Affiliations

  • M. S. Elmanharawy
    • 1
  • A. H. Eid
    • 1
    • 2
  • A. Abdel Kader
    • 1
    • 3
  1. 1.Physics Unit, The National Cancer InstituteCairo UniversityCairoEgypt
  2. 2.Electron Microscopy Laboratory, Physics DepartmentThe National Research CentreDokki, CairoEgypt
  3. 3.El-Nasr Company for TelevisionDar El-Salam, CairoEgypt

Personalised recommendations