Deformations of elastic membranes—Effect of different constitutive relations

  • P. Pujara
  • T. J. Lardner
Brief Reports


Results for the nonlinear axisymmetric deformations of flat circular membranes and of spherical cap membranes subjected to a uniform pressure are presented. The emphasis of the study is on the effect of two different constitutive relations on the nature of the deformation when the membrane deforms into an approximate hemispherical shape.


Ergebnisse für nichtlineare axialsymmetrische Deformationen bei ebenen Kreismembranen und sphärischen Haubenmembranen unter gleichförmigem Druck werden besprochen. Besondere Beachtung findet die Auswirkung zweier verschiedener Stoffbeziehungen auf die Natur der Verformung, wenn sich die Membran in die ungefähre Gestalt einer Halbkugel deformiert.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. E. Adkins andR. S. Rivlin,Large Elastic Deformations of Thin Shells, Phil. Trans. Roy. Soc., London, A244, 505–531 (1952).Google Scholar
  2. [2]
    L. J. Hart-Smith andJ. D. C. Crisp,Large Elastic Deformations of Thin Rubber Membranes, Int. J. Engng. Sc.5, 1–24 (1967).Google Scholar
  3. [3]
    W. W. Klingbeil andR. T. Shield,Some Numerical Investigations on Empirical Strain-Energy Functions in the Large Axisymmetric Extensions of Rubber Membranes, Z. Angew. Math. Phys.15, 608–629 (1964).Google Scholar
  4. [4]
    H. O. Foster,Very Large Deformations of Axially Symmetrical Membranes Made of Neo-Hookean Materials, Int. J. Engng. Sc.5, 95–117 (1967).Google Scholar
  5. [5]
    W. H. Yang andW. W. Feng,On Axisymmetrical Deformations of Non-linear Membranes, JAM37, 1002–1011 (1970).Google Scholar
  6. [6]
    R. W. Dickey,The Plane Circular Elastic Surface Under Normal Pressure, Arch. Rat. Mech. Analysis26, 219–236 (1967).Google Scholar
  7. [7]
    A. E. Green andJ. E. Adkins,Large Elastic Deformations, 2nd Ed., Oxford University Press (1970).Google Scholar
  8. [8]
    P. M. Riplog,A Large Deformation Theory of Shell Membranes, Ph.D. Thesis, Stanford University (1957).Google Scholar
  9. [9]
    Wu Chien-Heng,Sphere like Deformations of a Ballon, Quart. Appl. Math.30, 183–194 (1972).Google Scholar
  10. [10]
    Wu, C-H andD. Y. Perng,On the Asymptotically Spherical Deformations of Arbitrary Membranes of Revolution Fixed Along an Edge and Inflated by Large Pressures — A Nonlinear Boundary Layer Phenomenon, SIAM J. Appl. Math.23, 133–152 (1972).Google Scholar
  11. [11]
    Wu, Chien-Heng,On Certain Integrable Nonlinear Membrane Solutions, Quart. Appl. Math.28, 81–90 (1970).Google Scholar
  12. [12]
    E. Richardson,Analysis of Suction Experiments on Red Blood Cells, Biorheology12, 39–55 (1975).Google Scholar
  13. [13]
    R. Skalak, A. Tozeren, R. P. Zarda andS. Chien,Strain Energy Function of Red Blood Cell Membranes, Biophys. J.13, 245–264 (1973).Google Scholar
  14. [14]
    R. Skalak,Modelling the Mechanical Behavior of Red Blood Cells, Biorheology10, 229–238 (1973).Google Scholar
  15. [15]
    J. B. Haddow andM. G. Faulkner,A Note on the Finite Elastic Inflation of a Thin Spherical Shell, Trans. CSME1, No. 3, 158–160 (1972).Google Scholar
  16. [16]
    R. P. Zarda,Large Deformations of an Elastic Shell in a Viscous Fluid, Ph.D. Thesis, Columbia University (1974).Google Scholar

Copyright information

© Birkhäuser-Verlag 1978

Authors and Affiliations

  • P. Pujara
    • 1
  • T. J. Lardner
    • 1
  1. 1.Dept. of Theoretical and Applied MechanicsUniversity of IllinoisUrbanaU.S.A.

Personalised recommendations