Der Quotienten-Differenzen-Algorithmus

  • Heinz Rutishauser
Article

Summary

The quotient-difference (=QD) algorithm developed by the author may be considered as an extension ofBernoulli's method for solving algebraic equations. WhereasBernoulli's method gives the dominant root as the limit of a sequence of quotientsq1(v)=s1(v+1)/s1(v) formed from a certain numerical sequences1(v), the QD-algorithm gives (under certain conditions) all the rootsλσ as the limits of similiar quotient sequencesqσ(v)=sσ(v+1)/sσ(v). Close relationship exists between this method and the theory of continued fractions. In fact the QD-algorithm permits developing a function given in the form of a power series into a continued fraction in a remarkably simple manner.

In this paper only the theoretical aspects of the method are discussed. Practical applications will be discussed later.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. [1]
    A. C. Aitken,On Bernoulli's Numerical Solution of Algebraic Equations, Proc. Roy. Soc. Edinburgh46, 289–305 (1925/26).Google Scholar
  2. [2]
    J. Hadamard,Essai sur l'étude des fonctions données par leur développement de Taylor, Thèse (Gauthier-Villars, Paris 1892).Google Scholar
  3. [3]
    M. R. Hestenes undE. Stiefel,Methods of Conjugate Gradients for Solving Linear Systems, J. Res. Nat. Bur. Standards49, 409–436 (1952).Google Scholar
  4. [4]
    C. Lanczos,An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators, J. Res. Nat. Bur. Standards45, 255–282 (1950).Google Scholar
  5. [5]
    C. Lanczos,Proceedings of a Second Symposium on Large Scale Calculating Machinery, (1949), S. 164–206.Google Scholar
  6. [6]
    H. Rutishauser,Beiträge zur Kenntnis des Biorthogonalisierungsalgorithmus von C. Lanczos, ZAMP4, 35–56 (1953).Google Scholar
  7. [7]
    E. Stiefel,Zur Berechnung höherer Eigenwerte symmetrischer Operatoren mit Hilfe der Schwarzschen Konstanten, ZaMM33, 260–262, (1953).Google Scholar
  8. [8]
    H. Wall,Analytic Theory of Continued Fractions (Van Nostrand Comp. Inc., New York 1948).Google Scholar

Copyright information

© Verlag Birkhäuser AG. 1954

Authors and Affiliations

  • Heinz Rutishauser
    • 1
  1. 1.Institut für angewandte Mathematik der ETHZürich

Personalised recommendations