Advertisement

Virchows Archiv A

, Volume 418, Issue 4, pp 301–309 | Cite as

DNA-ploidy and survival in gastric carcinomas: a flow-cytometric study

  • G. Baretton
  • O. Carstensen
  • M. Schardey
  • U. Löhrs
Article

Summary

In 125 gastric carcinomas the nuclear DNA content was determined by flow cytometry from formalin-fixed and paraffin-embedded tissue of surgical specimens. The carcinomas were of intestinal or mixed type (85), and diffuse type (40). DNA-aneuploidy was found in 46% of the intestinal type and in 42% of the mixed type, but only in 15% of the diffuse-type carcinomas (P<0.01). The total rate of DNA-aneuploidy was 34%. Carcinomas localized in the cardia were more frequently DNA-aneuploid than tumours in other localizations (P<0.01). DNA-aneuploid carcinomas had metastasized more frequently to regional lymph nodes (P<0.05) whereas no correlations with tumour stage and cytological/histological grade were detected. In 94 patients follow-up data were available. DNA-aneuploidy was associated with a statistically significant poorer prognosis when compared to DNA-diploid tumours only in advanced gastric carcinomas with lymph node metastases (P=0.0488) and in the subgroup of advanced intestinal and mixed-type tumours (P=0.0289).

Key words

Flow cytometry Gastric cancer DNA-aneuploidy Prognosis Histological type 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkin NB, Kay R (1979) Prognostic significance of modal DNA value and other factors in malignant tumours, based on 1465 cases. Br J Cancer 40:210–220Google Scholar
  2. Aretxabala X de, Yonemura Y, Sugiyama K, Hirose N, Kumaki T, Fushida S, Miwa K, Miyazaki I (1989) Gastric cancer heterogenity. Cancer 63:791–798Google Scholar
  3. Baisch H (1984) Flußzytometrische Untersuchungen des DNA-Gehaltes und der Proliferationskinetik menschlicher Tumoren. Strahlentherapie 160:431–435Google Scholar
  4. Ballantyne KC, James RD, Robins RA, Baldwin RW, Hardcastle JD (1987) Flow cytometric analysis of the DNA content of gastric cancer. Br J Cancer 56:52–54Google Scholar
  5. Baretton G, Carstensen O, Lebeau A, Löhrs U (1987) Durchflußzytophotometrische DNA-Messungen an Magenkarzinomen: Retrospektive Untersuchung an Paraffin-eingebettetem Material. Verh Dtsch Ges Pathol 71:518Google Scholar
  6. Baretton G, Krech R, Löhrs U (1989) Regionäre durchflußzytophotometrische Untersuchungen an Nierenzellkarzinomen des Menschen. Verh Dtsch Ges Pathol 73:522Google Scholar
  7. Baretton G, Gille J, Oevermann E, Löhrs U (1990) Retrospektive durchflußzytophotometrische Untersuchung des DNA-Gehaltes kolorektaler Karzinome und Überprüfung der prognostischen Bedeutung der DNA-Ploidie. Verh Dtsch Ges Pathol 74:233–237Google Scholar
  8. Barlogie B, Raber MN, Schumann J, Johnson TS, Drewinko B, Swartzendruber DE, Göhde W, Andreeff M, Freireich EJ (1983) Flow cytometry in clinical cancer research. Cancer Res 43:3982–3997Google Scholar
  9. Becker N, Frentzel-Beyme R, Wagner G (1984) Krebsatlas der Bundesrepublik Deutschland. Springer, Berlin Heidelberg New YorkGoogle Scholar
  10. Bizer LS (1983) Adenocarcinoma of the stomach: current results of treatment. Cancer 51:743–745Google Scholar
  11. Böhm N, Sandritter W (1975) DNA in human tumors: a cytophotometric study. Curr Top Pathol 60:151–219Google Scholar
  12. Braun L (1988) Zur Prognose des Magenkarzinoms. Dtsch Med Wochenschr 113:672–677Google Scholar
  13. Bronzo R, Heit P, Weissmann G, Kahn E, McKinley M (1989) Implications of the flow cytometry in malignant conditions of the stomach. Am J Gastroenterol 84:1065–1068Google Scholar
  14. Danova M, Mazzini G, Wilson G, Ucci G, Dionigi P, Riccardi A, Fiocca R (1987) Ploidy and proliferative activity of human gastric carcinoma: a cytofluorometric study on fresh and paraffin embedded material. Basic Appl Histochem 31:73–82Google Scholar
  15. Deinlein E, Schmidt H, Riemann JF, Gräßel-Pietrusky R, Hornstein OP (1983) DNA flow cytometric measurements in inflammatory and malignant human gastric lesions. Virchows Arch [A] 402:185–193Google Scholar
  16. Dupont B, Lee JR, Burton GR, Cohn I (1978) Adenocarcinoma of the stomach: review of 1497 cases. Cancer 41:941–948Google Scholar
  17. Friedlander M, Hedley DW, Taylor IW (1984) Clinical and biological significance of aneuploidy in human tumours. J Clin Pathol 37:961–974Google Scholar
  18. Hedley DW, Friedlander ML, Taylor IW, Rugg CA, Musgrove A (1983) Method for analysis of cellular DNA content of paraffin-embedded pathological material using flow cytometry. J Histochem Cytochem 31:1333–1335Google Scholar
  19. Hedley DW, Friedlander ML, Taylor IW (1985) Application of DNA flow cytometry of paraffin-embedded archival material for the study of aneuploidy and its clinical significance. Cytometry 6:327–333Google Scholar
  20. Heppner GH (1984) Tumor heterogenity. Cancer Res 44:2259–2265Google Scholar
  21. Inokuchi K, Kodama Y, Sasaki O, Kamegawa T, Okamura T (1983) Differentiation of growth patterns of early gastric carcinoma determined by cytophotometric DNA-analysis. Cancer 51:1138–1141Google Scholar
  22. Kamegawa T, Okamura T, Sugimachi K, Inokuchi K (1986) Preoperative detection of a highly malignant type of early gastric cancer by cytophotometric DNA-analysis. Jpn J Surg 16:169–174Google Scholar
  23. Korenaga D, Tsujitani S, Haraguchi M, Okamura T, Tamada R, Sugimachi K, Akazawa K, Nose Y (1988) Long-term survival in Japanese patients with far advanced carcinoma of the stomach. World J Surg 12:236–240Google Scholar
  24. Lauren P (1965) The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. Acta Pathol Microbiol Scand 64:31–49Google Scholar
  25. Macartney JC, Camplejohn RS, Powell G (1986) DNA flow cytometry of histological material from human gastric cancer. J Pathol 148:273–277Google Scholar
  26. Mellin W, Davaris P, Jütte W, Heidl G, Krieg V, Grundmann E (1986) Vergleichende durchflußzytophotometrische DNA- and CEA-Analyse beim Magenkarzinom. Verh Dtsch Ges Pathol 70:234–237Google Scholar
  27. Ming SC (1977) Gastric carcinoma: a pathobiological classification. Cancer 39:2475–2485Google Scholar
  28. Nanus D, Kelsen DP, Niedzwiecki D, Chapman D, Brennan M, Cheng E, Melamed M (1989) Flow cytometry as a predictive indicator in patients with operable gastric cancer. J Clin Oncol 7:1105–1112Google Scholar
  29. Odegaard S, Hostmark J, Skagen DW, Schrumpf E, Laerum OD (1987) Flow cytometric DNA studies in human gastric cancer and polyps. Scand J Gastroenterol 22:1270–1276Google Scholar
  30. Pagnini CA, Rugge M (1985) Advanced gastric cancer and prognosis. Virchows Arch [A] 406:213–221Google Scholar
  31. Petrova AS, Subrichina GN, Tschistjakova OV, Lukina TA, Weiss H, Wildner G (1980) Flow cytofluorometry, cytomorphology and histology in gastric carcinoma. Oncology 37:318–324Google Scholar
  32. Pfeiffer CJ (1976) Epidemiologie des Magenkarzinoms. Leber Magen Darm 6:59–71Google Scholar
  33. Rübe C, Valet G, Eder M (1988) Cellular DNA content and metastasis pattern in colorectal carcinoma. Virchows Arch [A] 413:419–424Google Scholar
  34. Santini D, Bazzocchi F, Mazzoleni G, Ricci M, Viti G, Marrano D, Martinelli G (1987) Signet-ring cells in advanced gastric cancer. Acta Pathol Microbiol Immunol Scand [A] 95:225–231Google Scholar
  35. Sasaki K, Hashimoto T, Kawachino K, Takahashi M (1988) Intratumoral regional differences in DNA ploidy of gastrointestinal carcinomas. Cancer 62:2569–2575Google Scholar
  36. Statistisches Bundesamt Wiesbaden (1988) Gesundheitswesen, Fachserie 12, Reihe 4: Todesursachen. Metzler-Poeschel, StuttgartGoogle Scholar
  37. Steen HB, Lindmo T (1979) Flow cytometry: a high-resolution instrument for everyone. Science 204:403–404Google Scholar
  38. Stemmermann GN, Brown C (1974) A survival study of intestinal and diffuse types of gastric carcinoma. Cancer 33:1190–1195Google Scholar
  39. Teodori L, Capurso L, Cordelle E, De Vita R, Koch M, Tarquini M, Pallone F, Mauro F (1984) Cytometrically determined relative DNA content as an indicator of neoplasia in gastric lesions. Cytometry 5:63–70Google Scholar
  40. Thies E, Siegers CP (1989) Metabolic activation and tumorigenesis. In: Kaster AS, Richter E, Lauterbach F, Hartmann F (eds) Intestinal metabolism of xenobiotics. Progress in pharmacology and clinical pharmacology, vol 7/2. Fischer, Stuttgart, pp 199–214Google Scholar
  41. Tosi P, Leoncini L, Cintorino M, Vindigni C, Minacci C, Nuti S, Pinto E, De Stefano A, Cevenini G (1988) Flow cytometric analysis of DNA ploidy pattern from deparaffmized formalin-fixed gastric cancer tissue. Int J Cancer 42:868–871Google Scholar
  42. UICC International Union Against Cancer (1989) TNM atlas, illustrated guide to the TNM/pTNM classification of malignant tumours. Spiessl B, Beahrs OH, Hermanek P, Hutter RV, Scheibe O, Sobin LH, Wagner G (eds) Springer, Berlin Heidelberg New York, pp 71–81Google Scholar
  43. Viste A, Eide GE, Halvorsen K, Maartmann-Moe H, Soreide O (1986) The prognostic value of Lauren's histopathological classification system and ABO blood groups in patients with stomach carcinoma. Eur J Surg Oncol 12:135–141Google Scholar
  44. Watanabe H, Jass JR, Sobin LH (1990) Histological typing of oesophageal and gastric tumours (international histological classification of tumours). Springer, Berlin Heidelberg New YorkGoogle Scholar
  45. Wyatt J, Quirke P, Ward DC, Clayden AD, Dixon MF, Johnston D, Bird CC (1989) Comparison of histopathological and flow cytometric parameters in prediction of prognosis in gastric cancer. J Pathol 158:195–201Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • G. Baretton
    • 1
  • O. Carstensen
    • 1
  • M. Schardey
    • 2
  • U. Löhrs
    • 1
  1. 1.Institut für PathologieMedizinische Universität zu LübeckLübeck 1Federal Republic of Germany
  2. 2.Department of SurgeryMedical University of LübeckLübeckFederal Republic of Germany

Personalised recommendations