Applied Physics A

, Volume 62, Issue 4, pp 303–311 | Cite as

Microcavity dynamics during laser-induced spallation of liquids and gels

  • G. Paltauf
  • H. Schmidt-Kloiber
Article

Abstract

Photomechanical fracture induced by thermoelastic stress waves is an important mechanism of tissue ablation by short laser pulses. In this study, we present experimental investigations of the fracture process in ductile, water-containing materials and compare the results with a theoretical calculation. The model describes cavitation caused by the negative part of a bipolar thermoelastic stress wave. Pulses from aQ-switched, frequency-doubled Nd:YAG laser with 8 ns duration were used to irradiate dyed water and gelatine with variable absorption coefficient. Cavitation and ablation were observed with various time-resolved methods such as stress detection, video imaging and an optical pump-probe technique for the detection of individual cavities. Quantitative agreement between experiment and simulation could be achieved in the case of cavity lifetimes, especially at low laser fluence where the bubble density is low and no coalescence takes place. An increase of the threshold energy density for ablation with rising absorption coefficient and a distortion of the thermoelastic wave in the presence of cavitation were experimentally observed and could be qualitatively explained by use of the simulation. The results obtained in this study should facilitate the choice of the optimal laser parameters for photomechanical tissue ablation.

PACS

87.00 81.60 43.00 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.A. Oraevsky, R.O. Esenaliev, V.S. Lethokhov: InLaser Ablation, Mechanisms and Applications. ed. by J.C. Miller, R.F. Haglund, Lecture Notes Phys., Vol. 389 (Springer, Berlin, Heidelberg 1991) pp. 112–122Google Scholar
  2. 2.
    G. Paltauf, E. Reichel, H. Schmidt-Kloiber: SPIE Proc.1646, 343 (1992)Google Scholar
  3. 3.
    A.A. Oraevsky, S.L. Jacques, F.K. Tittel: J. Appl. Phys.78, 1281 (1995)Google Scholar
  4. 4.
    S.L. Jacques, G. Gofstein: SPIE Proc.1646, 284 (1992)Google Scholar
  5. 5.
    G. Paltauf, H. Schmidt-Kloiber: SPIE Proc.2134A, 93 (1994)Google Scholar
  6. 6.
    A.A. Oraevsky, R. Esenaliev, S.L. Jacques, F.K. Tittel: SPIE Proc.2391, 300 (1995)Google Scholar
  7. 7.
    D. Albagli, B. Banish, M. Dark, G.S. Janes, C. von Rosenberg, L. Perelman, I. Itzkan, M.S. Feld: Lasers Surg. Med.14, 374 (1994)Google Scholar
  8. 8.
    E.F. Carome, N. A. Clark, C. E., Moeller: Appl. Phys. Lett.4, 95 (1964)Google Scholar
  9. 9.
    M.W. Sigrist: J. Appl. Phys.60, R83 (1986)Google Scholar
  10. 10.
    J.C. Bushnell, D.J. McCloskey: J. Appl. Phys.39, 5541 (1968)Google Scholar
  11. 11.
    P.E. Dyer, R.K. Al-Dhahir: SPIE Proc.1202, 46 (1990)Google Scholar
  12. 12.
    F.W. Cross, R.K. Al-Dhahir, P.E. Dyer: J. Appl. Phys.64, 2194 (1988)Google Scholar
  13. 13.
    D. Albagli, M. Dark, L.T. Perelman, C. von Rosenberg, I. Itzkan, M.S. Feld: Opt. Lett.19, 1684 (1994)Google Scholar
  14. 14.
    R.S. Dingus, R.J. Scammon: SPIE Proc.1427, 45 (1991)Google Scholar
  15. 15.
    R.A. Wentzell, G.J. Lastman: Phys. Fluids26, 638 (1983)Google Scholar
  16. 16.
    E. Cramer: InCavitation and Inhomogeneities in Underwater Acoustics, ed. by W. Lauterborn, Springer Ser. Electron. Photon., Vol. 4 (Springer, Berlin, Heidelberg 1980) pp. 54–63Google Scholar
  17. 17.
    A.L. McKenzie: Phys. Med. Biol.35, 1175 (1990)Google Scholar
  18. 18.
    V.P. Skripov, E.N. Sinitsyn, P.A. Pavlov, G.V. Ermakov, G.N. Muratov, N.V. Bulanov, V.G. Baidakov:Thermophysical Properties of Liquids in the Metastable (Superheated) State (Gordon & Breach, New York 1988)Google Scholar
  19. 19.
    G. Paltauf, H. Schmidt-Kloiber: Lasers Surg. Med.16, 277 (1995)Google Scholar
  20. 20.
    J.C. Fisher: J. Appl. Phys.19, 1062 (1948)Google Scholar
  21. 21.
    K.J. Ebeling: Acustica40, 229 (1978) (in German)Google Scholar
  22. 22.
    R.A. Wentzell, G.J. Lastman: InCavitation and Inhomogeneities in Underwater Acoustics. ed. by W. Lauterborn, Springer Ser. Electron. Photon., Vol. 4 (Springer, Berlin, Heidelberg 1980) pp. 72–78Google Scholar
  23. 23.
    R.E. Apfel: InCavitation and Inhomogeneities in Underwater Acoustics, ed. by W. Lauterborn, Springer Ser. Electron. Photon., Vol. 4 (Springer, Berlin, Heidelberg 1980) pp. 79–83Google Scholar
  24. 24.
    J.W. Rayleigh: Philos. Mag.34, 94 (1917)Google Scholar
  25. 25.
    T. Antoun, L. Seaman, M.E. Glinsky: SPIE Proc.2391, 413 (1995)Google Scholar
  26. 26.
    R.H. Cole:Underwater Explosions (Dover, New York 1948)Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • G. Paltauf
    • 1
  • H. Schmidt-Kloiber
    • 1
  1. 1.Institut für ExperimentalphysikKarl-Franzens-Universität GrazGrazAustria

Personalised recommendations