Czechoslovak Journal of Physics B

, Volume 23, Issue 6, pp 627–635 | Cite as

Dissipative boundary conditions for ferromagnetic resonance equations

  • V. Kamberský
Article

Abstract

Surface scattering of electrons and magnons results in nonuniform dissipation of the energy of ferromagnetic resonance (FMR) modes. This surface damping may be included in proper boundary conditions for the magnetic differential equations of motion, which are derived phenomenologically in the same way as the usual “spin-pinning” conditions. An analysis of the local energy balance in non-uniform modes leads to the concept of spin-wave energy flow; the dissipative boundary conditions describe the flow of the coherent mode energy into the surface. The magnitude of the surface damping parameters is only crudely estimated. Numerical calculations of the FMR linewidth and the shapes of standing-spinwave spectra indicate that experimentally significant effects may appear with damping parameters near to the estimated upper limits.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Heinrich B., Fraitová D., Kamberský V., Phys. Stat. Sol.23 (1967), 501.Google Scholar
  2. [2]
    Kambersky V., Can. J. Phys.48 (1970), 2906.Google Scholar
  3. [3]
    Prange R. E., Korenman V., J. Mag. Resonance6 (1972), 274.Google Scholar
  4. [4]
    Dyson F. J., Phys. Rev.98 (1955), 349.Google Scholar
  5. [5]
    Sparks M., Ferromagnetic-Relaxation Theory, McGraw-Hill, New York 1964.Google Scholar
  6. [6]
    Sparks M., Phys. Rev.B 1 (1970), 3856.Google Scholar
  7. [7]
    Frait Z., MacFaden H., Phys. Rev.139 (1965), A 1173.Google Scholar
  8. [8]
    Bhagat S. M., Hirst L. L., Phys. Rev.151 (1966), 401.Google Scholar
  9. [9]
    Frait Z., Pauliny-Tothová L., Veselá M., Czech. J. Phys.B 20 (1970), 1268.Google Scholar
  10. [10]
    Herring C.,in: Magnetism, G. T. Rado and H. Suhl, Eds., Vol. 4; Academic Press, New York 1966.Google Scholar
  11. [11]
    Fulde P., Luther A., Phys. Rev.175 (1968), 337.Google Scholar
  12. [12]
    Kamberský V., Czech. J. Phys.B 22 (1972), 572.Google Scholar
  13. [13]
    Soohoo R. F., Magnetic Thin Films, Harper and Row, New York 1965.Google Scholar
  14. [14]
    Hirst L. L., Phys. Rev.141 (1966), 503.Google Scholar
  15. [15]
    Rado G. T., Weertman J. R., J. Phys. Chem. Sol.11 (1959), 315.Google Scholar
  16. [16]
    Kaplan J. I., Phys. Rev.114 (1959), 575.Google Scholar
  17. [17]
    Brown W. F., Micromagnetics, J. Wiley, New York 1963.Google Scholar
  18. [18]
    Callen H. B., Pittelli E., Phys. Rev.119 (1960), 1523.Google Scholar
  19. [19]
    Wangsness R. K., Phys. Rev.104 (1956), 857.Google Scholar
  20. [20]
    McDonald J. R., Phys. Rev.103 (1956), 280.Google Scholar
  21. [21]
    Hirst L. L., Phys. Rev.164 (1967), 971.Google Scholar
  22. [22]
    Elliott R. J., Phys. Rev.96 (1954), 266.Google Scholar
  23. [23]
    Sparks M., Phys. Rev.B 1 (1970), 3869.Google Scholar
  24. [24]
    Schlömann E., J. Appl. Phys.35 (1964), 159.Google Scholar

Copyright information

© Academia, Publishing House of the Czechoslovak Academy of Sciences 1973

Authors and Affiliations

  • V. Kamberský
    • 1
  1. 1.Institute of PhysicsCzechosl. Acad. Sci., PraguePraha 8Czechoslovakia

Personalised recommendations