# The Fermat—Weber location problem revisited

- 350 Downloads
- 16 Citations

## Abstract

The Fermat—Weber location problem requires finding a point in ℝ^{ N } that minimizes the sum of weighted Euclidean distances to*m* given points. A one-point iterative method was first introduced by Weiszfeld in 1937 to solve this problem. Since then several research articles have been published on the method and generalizations thereof. Global convergence of Weiszfeld's algorithm was proven in a seminal paper by Kuhn in 1973. However, since the*m* given points are singular points of the iteration functions, convergence is conditional on none of the iterates coinciding with one of the given points. In addressing this problem, Kuhn concluded that whenever the*m* given points are not collinear, Weiszfeld's algorithm will converge to the unique optimal solution except for a denumerable set of starting points. As late as 1989, Chandrasekaran and Tamir demonstrated with counter-examples that convergence may not occur for continuous sets of starting points when the given points are contained in an affine subspace of ℝ^{ N }. We resolve this open question by proving that Weiszfeld's algorithm converges to the unique optimal solution for all but a denumerable set of starting points if, and only if, the convex hull of the given points is of dimension*N.*

## Keywords

Location theory Fermat—Weber problem Weiszfeld's iterative algorithm## Preview

Unable to display preview. Download preview PDF.

## References

- [1]J. Brimberg and R.F. Love, “Local convergence in a generalized Fermat—Weber problem,”
*Annals of Operations Research*40 (1992) 33–66.Google Scholar - [2]J. Brimberg and R.F. Love, “Global convergence of a generalized iterative procedure for the minisum location problem with
*l*_{p}distances,”*Operations Research*41 (1993) 1153–1163.Google Scholar - [3]R. Chandrasekaran and A. Tamir, “Open questions concerning Weiszfeld's algorithm for the Fermat—Weber location problem,”
*Mathematical Programming*44 (1989) 293–295.Google Scholar - [4]L. Cooper, “Location—allocation problems,”
*Operations Research*11 (1963) 37–52.Google Scholar - [5]H. Juel and R.F. Love, “Fixed point optimality criteria for the location problem with arbitrary norms,”
*Journal of the Operational Research Society*32 (1981) 891–897.Google Scholar - [6]I.N. Katz, “Local convergence in Fermat's problem,”
*Mathematical Programming*6 (1974) 89–104.Google Scholar - [7]H.W. Kuhn, “A note on Fermat's problem,”
*Mathematical Programming*4 (1973) 98–107.Google Scholar - [8]H.W. Kuhn and R.E. Kuenne, “An efficient algorithm for the numerical solution of the generalized Weber problem in spatial economics,”
*Journal of Regional Science*4 (1962) 21–34.Google Scholar - [9]W. Miehle, “Link-length minimization in networks,”
*Operations Research*6 (1958) 232–243.Google Scholar - [10]A.E. Taylor and W.R. Mann,
*Advanced Calculus*(Xerox College Publishing, Lexington, MA, 2nd ed., 1972).Google Scholar - [11]E. Weiszfeld, “Sur le point par lequel la somme des distances de
*n*points donnés est minimum,”*Tohoku Mathematics Journal*43 (1937) 355–386.Google Scholar