Advertisement

Propagation of disturbances in an unsteady free-convection boundary layer

  • Susan N. Brown
  • Norman Riley
Original Papers

Summary

In this paper we consider the effects of the superposition, upon the steady free-convection boundary layer on a semi-infinite vertical plate, of a small-amplitude time-dependent disturbance. At large distances from the leading edge it is shown that the formal asymptotic solution includes eigensolutions whose undetermined coefficients depend upon conditions at the leading edge.

Keywords

Boundary Layer Mathematical Method Large Distance Asymptotic Solution Vertical Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

In dieser Arbeit betrachten wir die Wirkungen der Ueberlagerung einer zeitabhängigen Störung von kleiner Amplitude auf die stationäre Grenzschicht an einer halb-unendlichen senkrechten Platte bei freier Konvektion. Es wird gezeigt, dass in grossen Entfernungen von der Vorderkante die formale asymptotische Lösung Eigenlösungen einschliesst, deren unbestimmte Koeffizienten von den Verhältnissen an der Vorderkante abhängig sind.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Stewartson, Quart. J. Mech. appl. Math.4, 182 (1951).Google Scholar
  2. [2]
    M.G. Hall, Proc. Roy. Soc. A310, 401 (1969).Google Scholar
  3. [3]
    S.C.R. Dennis, J. Inst. Math. Applic.10, 105 (1972).Google Scholar
  4. [4]
    K. Stewartson, Quart. J. Mech. appl. Math.26, 143 (1973).Google Scholar
  5. [5]
    S.N. Brown andN. Riley, J. Fluid Mech.59, 225 (1973).Google Scholar
  6. [6]
    C.R. Illingworth, Proc. Camb. phil. Soc.46, 603 (1950).Google Scholar
  7. [7]
    R. Siegel, Trans. A.S.M.E.80, 347 (1958).Google Scholar
  8. [8]
    R.J. Goldstein andD.G. Briggs, Trans. A.S.M.E.86, 490 (1964).Google Scholar
  9. [9]
    B. Gebhart, Proc. I.U.T.A.M. Symp.Recent Research on Unsteady Boundary Layers (Laval University Press, 1972).Google Scholar
  10. [10]
    M.J. Lighthill, Proc. Roy. Soc. A224, 1 (1954).Google Scholar
  11. [11]
    S.H. Lam andN. Rott, Cornell Univ. G.S.A.E. Rep. A.F.O.S.R. TN-60-1100 (1960).Google Scholar
  12. [12]
    R.C. Ackerberg andJ.H. Phillips, J. Fluid Mech.51, 137 (1972).Google Scholar
  13. [13]
    S.N. Brown andK. Stewartson, Proc. Camb. phil. Soc.73, 493 (1973).Google Scholar
  14. [14]
    R.S. Nanda andV.P. Sharma, J. Fluid Mech.15, 419 (1963).Google Scholar
  15. [15]
    J.H. Phillips andR.C. Ackerberg, J. Fluid Mech.58, 561 (1973).Google Scholar
  16. [16]
    C. Lanczos,Applied Analysis (Pitman, 1957).Google Scholar

Copyright information

© Birkhäuser-Verlag 1974

Authors and Affiliations

  • Susan N. Brown
    • 1
  • Norman Riley
    • 2
  1. 1.University CollegeLondonUK
  2. 2.University of East AngliaNorwichUK

Personalised recommendations