On the entropy inequality for material interfaces

  • A. I. Murdoch
Original Papers


The form of entropy inequality appropriate to material interfaces, when viewed as bidimensional continua, is established from three-dimensional considerations.


Entropy Mathematical Method Material Interface Entropy Inequality 


Ausgehend von einer dreidimensionalen Untersuchung wird durch Grenzübergang die Entropie-Ungleichung für materielle Trennflächen gewonnen, die als zweidimensionale Kontinua zu betrachten sind.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. M. Naghdi,The Theory of Shells and Plates, in Handbuch der Physik Vol. VI, a/2, (ed C. Truesdell), Springer-Verlag, Berlin, Heidelberg, New York, 1972.Google Scholar
  2. [2]
    M. E. Gurtin andA. I. Murdoch,A Continuum Theory of Elastic Material Surfaces, Arch. Ratl Mech. Anal.57, 291–323, 1975.Google Scholar
  3. [3]
    A. I. Murdoch,A Thermodynamical Theory of Elastic Material Interfaces, Quart. J. Mech. App. Math. to appear.Google Scholar
  4. [4]
    G. M. C. Fisher andM. J. Leitman,On Continuum Thermodynamics with Surfaces, Arch. Ratl Mech. Anal.30, 225–262 1968.Google Scholar
  5. [5]
    M. E. Gurtin andW. O. Williams,An Axiomatic Foundation for Continuum Thermodynamics, ibid.,26, 83–117, 1967.Google Scholar
  6. [6]
    A. E. Green, P. M. Naghdi andW. L. Wainwright,A General Theory of a Cosserat Surface, ibid.,20, 287–308, 1965.Google Scholar
  7. [7]
    A. E. Green andP. M. Naghdi,Non-isothermal Theory of Rods, Plates and Shells, Int. J. Solids Struct.6, 209–244, 1970.Google Scholar
  8. [8]
    C. Truesdell andW. Noll,The Non-linear Field Theories of Mechanics, Handbuch der Physik, Vol. III/3, (ed. S. Flügge), Springer-Verlag, Berlin, Heidelberg, New York, 1965.Google Scholar

Copyright information

© Birkhäuser-Verlag 1976

Authors and Affiliations

  • A. I. Murdoch
    • 1
  1. 1.School of Mathematics and PhysicsUniversity of East AngliaNorwichUK

Personalised recommendations