A theoretical study of Zn++ interacting with models of ligands present at the thermolysin active site

  • Claude Giessner-Prettre
  • Olivier Jacob
Research Papers

Summary

The binding energy and the geometrical arrangements of the complexes formed by the zinc dication with OH, one, four, five or six water molecules, SH, H2S, formic acid, the formate anion, imidazole, its anion and formamide are calculated using the MNDO method. The comparison of the results obtained with those of ab initio computations on the same complexes induced us to propose for Zn++ a set of parameters different from the one determined by Dewar for the neutral metal atom. Using the two MNDO parametrizations, similar calculations are carried out for Zn++ interacting with two molecules of 2-aminoethanethiol and with models of the four ligands which are present at the thermolysin active site, in order to evaluate the possibilities and limitations of this semiempirical method for theoretical studies concerning zinc metalloenzymes. In the last case, the results obtained suggest that, in the crystal state, the water molecule could be deprotonated. This finding is discussed in relation with the mechanism of action of the enzyme which has been proposed.

Key words

Zn++-complexes MNDO Ab initio Thermolysin active site 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vallee, B.L. and Galdes, A., Adv. Enzymol., 56 (1984) 283–430.Google Scholar
  2. 2.
    Thorsett, E.D. and Wivrat, M.J., In Torner, A.J. (Ed.) Neuropeptides and their Inhibitors, Ellis Horwood, Chichester, 1987, pp. 229–292.Google Scholar
  3. 3.
    Durand, P. and Barthelat, J.C., Theor. Chim. Acta, 38 (1975) 283–302.Google Scholar
  4. 4.
    Ratner, M.A., Topiol, S. and Moskowitz, J.W., Int. J. Quantum Chem., Quantum Chem. Symp. 11 (1977) 493–499.Google Scholar
  5. 5.
    Demoulin, D. and Pullman, A., Theor. Chim. Acta, 49 (1978) 161–181.Google Scholar
  6. 6.
    Sakai, Y., Miyoshi, E., Klobukowsky, M. and Huzinaga, S., J. Comp. Chem., 38 (1987) 226–255.Google Scholar
  7. 7.
    Witko, M. and Bonacic-Koutetsky, V., Int. J. Quantum Chem. 29 (1986) 1535–1554.Google Scholar
  8. 8.
    Murphy, M.F., Haarstad, V.B. and Hahn, F.B., Int. J. Quantum Chem., Quantum Biol. Symp. 1 (1974) 149–157.Google Scholar
  9. 9.
    Baetzold, R.C., J. Chem. Phys., 89 (1985) 4150–4155.Google Scholar
  10. 10.
    Eisenstein, O., Canadell, E. and Thanh, B.T., Nouv. J. Chim., 10 (1986) 422–424.Google Scholar
  11. 11.
    Anderson, A.B. and Nichols, J.A., J. Am. Chem. Soc., 108 (1986) 1385–1388.Google Scholar
  12. 12 a.
    Dewar, M.J.S. and Merz Jr., K.M., Organometallics, 5 (1986) 1494–1496.Google Scholar
  13. 12 b.
    Dewar, M.J.S. and Merz Jr., K.M., Organometallics, 7 (1988) 522–524.Google Scholar
  14. 13 a.
    Rodriguez, J.A. and Campbell, C.T., J. Chem. Phys. 91 (1987) 6648–6658.Google Scholar
  15. 13 b.
    Rodriguez, J.A. and Campbell, C.T., Surf. Sci., 194 (1988) 475–504.Google Scholar
  16. 13 c.
    Rodriguez, J.A. and Campbell, C.T. Surf. Sci., 197 (1988) 567–593.Google Scholar
  17. 14.
    Schaeffer, A.M., Gouterman, M. and Davidson, E.R., Theor. Chim. Acta, 30 (1973) 9–30.Google Scholar
  18. 15.
    Edward, W.D. and Zerner, M.C., Can. J. Chem., 63 (1985) 1763–1772.Google Scholar
  19. 16.
    Dewar, M.J.S., Olivella, J. and Stewart, J.J.P., J. Am. Chem. Soc., 108 (1986) 5771–5779.Google Scholar
  20. 17.
    Dewar, M.J.S. and Merz Jr., K.M., J. Am. Chem. Soc. 109 (1987) 6553–6554.Google Scholar
  21. 18.
    Dewar, M.J.S., Zoebisch, E.G.; Healy, E.F. and Stewart, J.J.P., J. Am. Chem. Soc., 107 (1985) 3902–3909.Google Scholar
  22. 19.
    Schade, C., Schleyer, P.v. R.; Dietrich, H. and Mahdi, W., J. Am. Chem. Soc., 108 (1986) 2484–2485.Google Scholar
  23. 20.
    Glaser, A. and Streitwieser Jr., A., J. Mol. Struct., 163 (1988) 19–50.Google Scholar
  24. 21.
    Holmes, M.A. and Matthews, B.W., J. Mol. Biol., 163 (1982) 623–639.Google Scholar
  25. 22.
    Cohen, B., Mastropolo, D., Potenza, J.A. and Shugar, H.J., Acta Crystallogr., Sect. B, 34 (1978) 2859–2860.Google Scholar
  26. 23 a.
    Clementi, E., Andre, J.M., Andre, M.-Cl., Klint, D. and Hahn, D., Acta Phys. Acad. Sci. Hung., 27 (1969) 493–523.Google Scholar
  27. 23 b.
    Roos, B. and Siegbahn, R.F., Theor. Chim. Acta, 17 (1970) 209–219.Google Scholar
  28. 24 a.
    Berthod, H., Gresh, N. and Pullman, A., Int. J. Quant. Chem., Quant. Chem. Symp. 10 (1976) 59–76.Google Scholar
  29. 24 b.
    Pullman, A. and Berthod, H., Chem. Phys. Lett., 81 (1981) 195–200.Google Scholar
  30. 25.
    Dobbs, K.D. and Hehre, W.J., J. Comp. Chem., 8 (1987) 861–879.Google Scholar
  31. 26.
    Colonna Cesari, F. and Tapia, O., Personal communication (1987).Google Scholar
  32. 27.
    Chandrasekhar, J., Andrade, J.G. and Schleyer, P.v. R., J. Am. Chem. Soc., 103 (1983) 5609–5612.Google Scholar
  33. 28.
    Dunning Jr., T.H. and Hay, P.J., In Shaeffer III, H. (Ed.) Modern Quantum Chemistry, Vol. III, Plenum, New York, 1977, pp. 1–27.Google Scholar
  34. 29.
    Herzberg, G., Molecular Spectra and Molecular Structure. III; Electronic Spectra and Electronic Structure of Polyatomic Molecules, Van Nostrand Reinhold, New York, 1966, p. 624.Google Scholar
  35. 30.
    Burger, N. and Fuess, H., Acta Crystallogr., Sect. B, 33 (1977) 1968–1970.Google Scholar
  36. 31.
    Craven, B.M., McMullan, R.K., Bell, J.D. and Freeman, H.C., Acta Crystallogr., Sect. B, 33 (1977) 2585–2589.Google Scholar
  37. 32.
    Ladell, J. and Post, B., Acta Crystallogr., 7 (1954) 559–564.Google Scholar
  38. 33.
    Kothekar, V., Pullman, A. and Demoulin, D., Int. J. Quant. Chem., 14 (1978) 779–791.Google Scholar
  39. 34.
    Pullman, A. and Demoulin, D., In Pullman, B. and Yagi, K. (Eds.) Water and Metal Cations in Biological Systems, Japan Scientific Societies Press, Tokyo, 1979, pp. 135–146.Google Scholar
  40. 35.
    Demoulin, D., Pullman, A. and Sarkar, B., J. Am. Chem. Soc., 99 (1977) 8498–8500.Google Scholar
  41. 36.
    Nakagawa, S., Umeyama, H., Kitaura, K. and Morokuma, K., Chem. Pharm. Bull., 29 (1981) 1–6.Google Scholar
  42. 37.
    Nakagawa, S. and Umeyama, H., Chem. Phys. Lett., 81 (1981) 503–507.Google Scholar
  43. 38.
    Basch, H., Krauss, M. and Stevens, W.J., J. Am. Chem. Soc., 107 (1985) 7267–7271,Google Scholar
  44. 39.
    Iffert, R. and Jug, K., Theor. Chim. Acta, 72 (1987) 363–378.Google Scholar
  45. 40.
    Clark, T., Chandrasekhar, J., Spitznagell, G.W. and Schleyer, P.v.R., J. Comp. Chem., 4 (1983) 294–301.Google Scholar
  46. 41.
    Brauman, J.I. and Blair, L.K., J. Am. Chem. Soc., 92 (1970) 5986–5992.Google Scholar
  47. 42 a.
    Lehn, J.-M., Wipf, G. and Demuynck, J., Chem. Phys., Lett., 76 (1980) 344–346.Google Scholar
  48. 42 b.
    Sano, M. and Yumatera, H., Chem. Lett., (1980) 1495–1496.Google Scholar
  49. 43.
    Holmes, M.A. and Matthews, B.W., Biochemistry, 20 (1981) 6912–6920.Google Scholar
  50. 44.
    Ohtaki, I.H., Yamaguchi, T. and Maeda, M., Bull. Chem. Soc. Jpn., 49 (1976) 701–708.Google Scholar
  51. 45 a.
    Marchese, F.T. and Beveridge, D.L., Int. J. Quant. Chem., 29 (1986) 619–625.Google Scholar
  52. 45 b.
    Clementi, E., Corongiu, G. and Romano, S., Gazz, Chim. Ital., 109 (1979) 669–681.Google Scholar
  53. 46 a.
    Knuuttila, Polyhedron, 3 (1984) 303–305.Google Scholar
  54. 46 b.
    Gupta, M.P. and Agrawal, J.L., Cryst. Struct. Commun., 6 (1977) 103–106.Google Scholar
  55. 46 c.
    Cariati, F., Erre, L., Milera, G., Panzanelli, A., Ciani, G. and Sironi, A., Inorg. Chim. Acta, 80 (1983) 57–65.Google Scholar
  56. 46 d.
    Cernak, J., Chomic, J., Dunaj-Jurco, M. and Kappenstein, C., Inorg. Chim. Acta, 85 (1984) 219–226.Google Scholar
  57. 47 a.
    Monzingo, A.F. and Matthews, B.W., Biochemistry 21 (1982) 3390–3394.Google Scholar
  58. 47 b.
    Korwin, D. T. and Kock, S.A., Inorg. Chem., 27 (1988) 493–496.Google Scholar
  59. 48 a.
    Ahlgren, M., Turpenein, U. and Hamalainen, R., Acta Chem. Scand., Ser. A, 36 (1982) 841–845.Google Scholar
  60. 48 b.
    Grewe, H., Udupa, M.R. and Krebs, B., Inorg. Chim. Acta, 63 (1982) 119–124.Google Scholar
  61. 48 c.
    Holden, H.M., Tonrud, D.E., Monzingo, A.F., Weaver, L.H. and Matthews, B.W., Biochemistry, 26 (1987) 8542–8553.Google Scholar
  62. 48 d.
    Bencini, A., Bianchi, A., Garcia-Espana, E., Mangani, S., Micheloni, M., Orioli, P. and Paoletti, P., Inorg. Chem., 27 (1988) 1104–1107.Google Scholar
  63. 49.
    Jacob, O., Unpublished results (1987).Google Scholar
  64. 50.
    Kebarle, P., Annu. Rev. Phys. Chem., 28 (1977) 445–476.Google Scholar
  65. 51.
    Meot-Ner (Mautner), M., J. Am. Chem. Soc., 110 (1988) 3071–3075.Google Scholar

Copyright information

© ESCOM Science Publishers B.V. 1989

Authors and Affiliations

  • Claude Giessner-Prettre
    • 1
  • Olivier Jacob
    • 2
  1. 1.Laboratoire de Chimie Organique ThéoriqueUniversité Pierre et Marie CurieParis Cedex 05France
  2. 2.Laboratoire de Chimie Organique Physique (ERA 422), Groupe de RMN et de Modelisation MoléculaireInstitut Le BelStrasbourgFrance

Personalised recommendations