Fluorescence-based DNA fingerprinting elucidates nosocomial transmission of phenotypically variablePseudomonas aeruginosa in intensive care units

  • H. Grundmann
  • C. Schneider
  • F. D. Daschner


DNA fingerprinting based on automated laser fluorescence analysis of randomly amplified polymorphic DNA (RAPD-ALFA) is a rapid and convenient technique for detecting clonal relatedness of bacterial isolates of nosocomial concern. During an outbreak ofPseudomonas aeruginosa among five patients in a medical intensive care unit, transmission was not suspected because of the phenotypic variability of the initial isolates. However, DNA fingerprinting by RAPD-ALFA and macrorestriction analysis identified a single genotype (strain A) for isolates from three patients and another genotype (strain B) for isolates from the remaining two patients. Strain A isolates displayed three phenotypes defined by different antibiotypes and distinct colony appearance. Retrospective analysis of DNA fingerprints demonstrated that strain A had been transmitted to the index patient one year previously in a different intensive care unit. The study demonstrates that genetic typing approaches are warranted should epidemiological relatedness be identified between phenotypically variant pathogens. Automated laser fluorescence analysis of PCR fingerprints may facilitate routine screening of bacterial isolates for in-house epidemiological surveillance. Antibiograms are an unsuitable approach for the typing ofPseudomonas aeruginosa.


Intensive Care Unit Bacterial Isolate Index Patient Phenotypic Variability Medical Intensive Care Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jarvis WR, Edwards JR, Culver DH, Hughes JM, Horan T, Emori TG, Banerjee S, Tolson J, Henderson T, Gaynes PR: Nosocomial infection rates in adult and pediatric intensive care units in the United States. American Journal of Medicine 1991, 91, Supplement 3B: 185–191.Google Scholar
  2. 2.
    Fagon JY, Chastre J, Domart Y, Trouillet JL, Pierre J, Darne C, Gibert C: Nosocomial pneumonia in patients receiving continuous mechanical ventilation. American Reviews of Respiratory Diseases 1989, 139: 877–893.Google Scholar
  3. 3.
    Kreger BE, Craven DE, Carling C: Gram-negative bacteremia III. Reassessment of etiology, epidemiology, and ecology in 612 patients. American Journal of Medicine 1980, 68: 332–336.Google Scholar
  4. 4.
    Ogel JW, Vasil ML: Molecular approaches to epidemiologic typing ofPseudomonas aeruginosa. In: Fick RB Jr (ed):Pseudomonas aeruginosa. The opportunist. Pathogenesis and disease. CRC Press, Boca Raton, 1993, p. 141–158.Google Scholar
  5. 5.
    International Pseudomonas Study Group: A multicenter comparison of methods for typing strains ofPseudomonas aeruginosa predominantly from patients with cystic fibrosis. Journal of Infectious Diseases 1994, 169: 134–142.Google Scholar
  6. 6.
    Doebbeling BN: Epidemics: identification and management. In: Wenzel RP (ed): Prevention and control of nosocomial infections. Williams and Wilkins, Baltimore, 1993, p. 177–206.Google Scholar
  7. 7.
    Widmer AF, Wenzel RP, Trilla A, Bale MJ, Jones RN, Doebbeling BN: Outbreak ofPseudomonas aeruginosa infections on a surgical intensive care unit: probable transmission via hand of a health care worker. Clinical Infectious Diseases 1993, 16: 372–376.Google Scholar
  8. 8.
    Emori GT, Gaynes RP: An overview of nosocomial infections, including the role of the microbiology laboratory. Clinical Microbiological Reviews 1993, 6: 428–442.Google Scholar
  9. 9.
    Weinstein RA: Multidrug resistant pathogens: epidemiology and control. In: Bennet JV, Brachmann PS (ed): Hospital infections. Little, Brown, Boston, 1992, p. 265–288.Google Scholar
  10. 10.
    Sanders WE, Sanders CC: Inducibleβ-lactamases: clinical and epidemiological implications for use of newer cephalosporins. Reviews of Infectious Diseases 1988, 10: 830–838.Google Scholar
  11. 11.
    Seipp HM, Wellensiek HJ, Beck EG: Häufung multiresistenter Erreger mit einheitlichem Resistenzmuster als Indikator für nosokomiale Übertragungen — nosokomiale Kontamination/Infektion. In: Beck EG, Eikmann T (ed): Hygiene in Krankenhaus und Praxis III-3.4. Ecomed, Landsberg, 1995, p. 1–8.Google Scholar
  12. 12.
    Grundmann H, Schneider C, Tichy HV, Simon R, Klare I, Hartung D, Daschner FD: Automated laser fluorescence analysis of randomly amplified polymorphic DNA: a rapid method for investigating nosocomial transmission ofAcinetobacter baumannii. Journal of Medical Microbiology 1995, 43: 446–451.Google Scholar
  13. 13.
    Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM: CDC definitions for nosocomial infections, 1988. American Journal of Infection Control 1988, 16: 128–140.Google Scholar
  14. 14.
    Grundmann H, Kropec A, Hartung D, Berner R, Daschner FD:Pseudomonas aeruginosa on a neonatal intensive care unit: reservoirs and ecology of the nosocomial pathogen. Journal of Infectious Diseases 1993, 168: 943–947.Google Scholar
  15. 15.
    National Committee for Clinical Laboratory Standards: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically (2nd ed). Approved standard, M7-A2. Villanova, PA, 1990.Google Scholar
  16. 16.
    O'Callaghan C, Morris A, Kirkly SM, Shingler AH: Novel method for detection ofβ-lactamase by using a chromogenic cephalosporin substrate. Antimicrobial Agents & Chemotherapy 1992, 1: 283–288.Google Scholar
  17. 17.
    Jarlier V, Nicolas MH, Fournier G, Philippon A: Extended broad-spectrumβ-lactamases conferring transferable resistance to newerβ-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Reviews of Infectious Diseases 1988, 10: 867–878.Google Scholar
  18. 18.
    Grundmann H, Schneider CH, Hartung D, Daschner FD, Pitt TL: Discriminatory power of three DNA-based typing techniques forPseudomonas aeruginosa. Journal of Clinical Microbiology 1995, 33: 528–534.Google Scholar
  19. 19.
    Akova M, Yang Y, Livermore DM: Interactions of tazobactam and clavulanate with inducebly- and constitutively-expressed class Iβ-lactamses. Journal of Antimicrobial Chemotherapy 1990, 25: 199–208.Google Scholar
  20. 20.
    Livermore DM, Yang YJ: β-lactamase lability and inducer power of newerβ-lactam antibiotics in relation to their activity againstβ-lactamase inducible mutants ofPseudomonas aeruginosa. Journal of Infectious Diseases 1987, 155: 775–782.Google Scholar
  21. 21.
    Giwercman B, Meyer CH, Lambert PA, Reinert C, Høiby N: High-levelβ-lactamase activity in sputum from cystic fibrosis patients during antipseudomonal treatment. Antimicrobial Agents & Chemotherapy 1992, 36: 71–76.Google Scholar

Copyright information

© MMV Medizin Verlag 1995

Authors and Affiliations

  • H. Grundmann
    • 1
  • C. Schneider
    • 1
  • F. D. Daschner
    • 1
  1. 1.Institut für Umweltmedizin & KrankenhaushygieneUniversitätsklinik FreiburgFreiburgGermany

Personalised recommendations