Czechoslovak Journal of Physics B

, Volume 34, Issue 11, pp 1157–1178 | Cite as

Isovector electromagnetic exchange currents in the chiral approach

  • J. AdamJr.
  • E. Truhlík


The problem studied in the paper concerns the structure of the isovector e.m. MEC operators of the A1−, ϱ- and π ranges in the interval of intermediate energies. The two main dynamic principles which we invoke in our considerations are the current conservation and the gauge chiral invariance. Respecting them consistently allows us to describe correctly the interaction of NA1 ϱπ system with the external e.m. field. Our main results are as follows:
  1. (i)

    We verified that our Lagrangian approach is consistent with the prediction of the low energy theorem at threshold.

  2. (ii)

    We showed explicitly the continuity equation which the longitudinal parts of our currents obey.

  3. (iii)

    We proved the equivalence relation for the MEC operator of the pion range and demonstrated the existence of the seagull current in the MEC operator built up using PS πN coupling. This new term influences strongly the exchange charge density.


In our approach, the vector dominance Dirac e.m. form factors appear naturally in formulae for MEC operators. However, any other choice of parametrization (e.g. dipole form factors) is possible for computational purposes and it does not result in any alteration of our formulae and conclusions. Also, the continuity equation does not change when putting form factors FBNN(q2) into the BNN vertices (B = = π. ϱ. A1) of the MEC operators and OBE potentials.


Form Factor Exchange Charge Continuity Equation Exchange Current Lagrangian Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Mesons in Nuclei, (eds. D. Wilkinson, M. Rho), North-Holland, Amsterdam, 1979.Google Scholar
  2. [2]
    Baier H.: Fortschr. Phys.27 (1979) 208.Google Scholar
  3. [3]
    Ivanov E., Truhlík E.: Fiz. Elem. Chastits At. Yadra12 (1981) 492; English transl. Sov. J. Part. Nucl.12 (1981) 198.Google Scholar
  4. [4]
    High Energy Physics and Nuclear Structure, Proc. Ninth Int. Conf., Versailles, July 1981, (eds. P. Cattillon, P. Radvanyi, M. Porneuf), North-Holland, Amsterdam, 1982.Google Scholar
  5. [5]
    Cambi A., Mosconi B., Ricci P.: Phys. Rev. Lett.48 (1982) 462.Google Scholar
  6. [6]
    Jaus W., Woolcock W. S.: Nucl. Phys.A 365 (1981) 477.Google Scholar
  7. [7]
    Strueve W., Hajduk Ch., Sauer P. U.: Nucl. Phys. A405 (1983) 620.Google Scholar
  8. [8]
    Maize M. A., Kim Y. E.: Nucl. Phys. A407 (1983) 507.Google Scholar
  9. [9]
    Riska D. O.: Nucl. Phys. A350 (1980) 227.Google Scholar
  10. [10]
    Hadjimichael E., Goulard B., Bornais R.: Phys. Rev. C27 (1983) 831.Google Scholar
  11. [11]
    Katayama T., Akaishi Y., Tanaka H.: Progr. Theor. Phys.63 (1980) 2127.Google Scholar
  12. [12]
    Dubach J., Koch J. H., Donelly T. W.: Nucl. Phys. A271 (1976) 279.Google Scholar
  13. [13]
    Friar J. L., Fallieros S.: Phys. Rev. C13 (1976) 2571.Google Scholar
  14. [14]
    Fabian W., Arenhövel H.: Nucl. Phys. A314 (1979) 253.Google Scholar
  15. [15]
    Hockert J., Riska D. O., Gari M., Huffman A.: Nucl. Phys. A217 (1973) 14.Google Scholar
  16. [16]
    Mathiot J. F., Riska D. O.: Phys. Lett. B133 (1983) 23.Google Scholar
  17. [17]
    Ivanov E., Truhlík E.: Nucl. Phys. A316 (1979) 437.Google Scholar
  18. [18]
    Ogievetsky V. I., Zupnik B. M.: Nucl. Phys. B24 (1970) 612.Google Scholar
  19. [19]
    Sakurai J. J.: Currents and Mesons, The University of Chicago Press, 1968.Google Scholar
  20. [20]
    Friar J. L.: Phys. Lett. B122 (1983) 11.Google Scholar
  21. [21]
    Callan C. G. et al.: Phys. Rev.177 (1969) 2247.Google Scholar
  22. [22]
    Donelly T. W., Walecka J. D.: Nucl. Phys. A274 (1976) 368.Google Scholar
  23. [23]
    Friar J. L., Gibson B. F.: Phys. Rev. C15 (1977) 1779.Google Scholar
  24. [24]
    Fubini S., Furlan G., Rossetti C.: Nuovo Cim.40 (1965) 1171.Google Scholar
  25. [25]
    De Baenst P.: Nucl. Phys. B24 (1970) 633.Google Scholar
  26. [26]
    Thompson R. H., Heller L.: Phys. Rev. C7 (1973) 2355.Google Scholar
  27. [27]
    Jaus W., Woolcock W. S.: The quasipotential formalism for pion exchange effects in the two-nucleon system, preprint, Zurich University, 1983.Google Scholar
  28. [28]
    Strueve W., Hajduk Ch., Sauer P. U.: The electromagnetic structure of the three nucleon bound states, preprint, Hannover University, 1983.Google Scholar
  29. [29]
    Gross F.: Phys. Rev. D10 (1974) 223.Google Scholar
  30. [30]
    Hosizaki N., Machida S.: Progr. Theor. Phys.24 (1960) 1325.Google Scholar
  31. [31]
    Wong C. W., Liu K. F.:in Lecture Notes in Physics, vol. 144, (eds. T. T. S. Kuo, S. S. M. Wong), Springer-Verlag, Berlin, 1981, ch. 1.Google Scholar

Copyright information

© ACADEMIA, Publishing House of the Czechoslovak Academy of Sciences 1984

Authors and Affiliations

  • J. AdamJr.
    • 1
  • E. Truhlík
    • 1
  1. 1.Institute of Nuclear PhysicsŘež n. PragueCzechoslovakia

Personalised recommendations