Selecta Mathematica

, Volume 1, Issue 3, pp 495–535 | Cite as

Hyperplane arrangements and holonomy equations

  • C. De Concini
  • C. Procesi
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    K. Aomoto. Functions hyperlogarithmiques et groupes de monodromie unipotents. J. Fac. Univ. Tokyo25 (1978), 149–156.Google Scholar
  2. [A]
    V.I. Arnold.The Vassiliev theory of discriminants and knots. in First European congress of Mathematics, Birkhäuser Basel, 1994.Google Scholar
  3. [B-N1]
    D. Bar Natan.On the Vassiliev knot invariants. Topology,34 (1995), 423–472.Google Scholar
  4. [B-N2]
    D. Bar Natan.Non-associative tangles. Harvard preprint (1993).Google Scholar
  5. [Bo]
    N. BourbakiGroupes et algèbres de Lie Ch 4-5-6. Hermann, Paris, 1981.Google Scholar
  6. [Br1]
    E. Brieskorn.Sur les groupes de tresses (d'après V I Arnold). Séminaire Bourbaki 1971/72, S.L.N.317 (1973).Google Scholar
  7. [Br2]
    E. Brieskorn. Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe. Inv. Math.,12 (1971) 57–61.Google Scholar
  8. [Ca]
    P. Cartier. Construction combinatoire des invariants de Vassiliev-Kontsevich des noeuds. C.R. Acad. Sci. Paris, Sér. I Math.,316 (1993) 1205–1210.Google Scholar
  9. [Ch]
    K.T. Chen.Iterated integrals of differential forms and loop space cohomology. Ann. of Math., (1973) 217–246.Google Scholar
  10. [Che1]
    I.V. Cherednik.Generalized Braid Groups and local r-matrix systems. Doklady Akad. Nauk SSSR,307 (1989) 27–34.Google Scholar
  11. [Che2]
    I.V. CherednikMonodromy Representations for Generalized Knizhnik-Zamolodchikov Equations and Hecke Algebras. Publ. RIMS, Kyoto Univ.27 (1991) 711–726.Google Scholar
  12. [D-P1]
    C. De Concini and C. Procesi.Wonderful models of subspace arrangements. Selecta Math., (to appear) (1995).Google Scholar
  13. [De1]
    P. Deligne. Les immeubles de groupes de tresses généralisés. Invent. Math.,17 (1972) 273–302.Google Scholar
  14. [De2]
    P. Deligne. Le groupe fondamental de la droite projective moins trois points. In “Galois groups over ℚ”, ed. Ihara, Ribet, Serre, Publ. M.S.R.I,16 (1987) 79–298.Google Scholar
  15. [De3]
    P. Deligne.Théorie de Hodge II. Publ. Math. I.H.E.S.,40 (1971) 5–58.Google Scholar
  16. [Dr1]
    V.G. Drinfeld.Quasi Hopf algebras. Leningrad Math. J.,1 (1990) 1419–1457.Google Scholar
  17. [Dr2]
    V. G. Drinfeld.On quasi triangular quasi-Hopf algebras and a group closely connected with Gal . Leningrad Math. J.,2 (1991), 829–860.Google Scholar
  18. [H]
    J. Humphreys.Reflection groups and Coxeter groups. Cambridge Studies in Adv. Math.,29 (1992).Google Scholar
  19. [K]
    M. Kontsevich.Vassiliev's knot invariants. Advances in Soviet Math.,16 (1993) 137–150.Google Scholar
  20. [Ka]
    C. Kassel.Quantum Groups. Graduate texts in Math., Springer155 (1995)Google Scholar
  21. [Ke]
    S. Keel.Intersection theory of moduli space of stable N-pointed curves of genus 0. T.A.M.S.,330 (1992), 545–574.Google Scholar
  22. [Kh]
    T. Khono.On the holonomy Lie algebra and the nilpotent completion of the fundamental group of the complement of hypersurfaces. Nagoya Math. J.,93 (1983) 21–37.Google Scholar
  23. [Kh1]
    T. Khono.Monodromy representations of braid groups and Yang-Baxter equations. Ann. Inst. Fourier,37 (1987) 139–160.Google Scholar
  24. [Kp]
    M.M. KapranovThe permutoassociahedron, Mac Lane's coherence theorem and asymptotic zones for the K-Z equation. J. Pure and Appl. Alg.85 (1993) 119–142.Google Scholar
  25. [K-Z]
    V.G. Knizhnik and A.B. Zamolodchikov.Current algebra and the Wess-Zumino model in two dimensions. Soviet J. of nuclear Physics,247 (1984), 83–103.Google Scholar
  26. [La]
    J.A. Lappo-Danilevsky.Mémoires sur la théorie des systèmes différentiels linéaires. Chelsea Publ. N.Y. (1953)Google Scholar
  27. [L-M]
    T.Q.T. Le and J. Murakani.Representations of the category of tangles by Kontsevich's iterated integral. Max-Planck-Institut Bonn, preprint.Google Scholar
  28. [Pi]
    S. Piunikhin.Combinatorial expression for universal Vassiliev's link invariant. Harvard Univ. preprint (1993).Google Scholar
  29. [V]
    V.A. Vassiliev.Complements of discriminants of smooth maps. A. M. S. Transl.98 (1992).Google Scholar
  30. [W-W]
    E.T. Whittaker and G.N. Watson.A course in modern analysis. Cambridge Univ. Press, 4th ed. (1962).Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • C. De Concini
    • 1
  • C. Procesi
    • 2
  1. 1.Scuola Normale SuperiorePisaItaly
  2. 2.Università di Roma “La Sapienza”RomaItaly

Personalised recommendations