Mathematical Programming

, Volume 45, Issue 1–3, pp 59–96

A cutting plane algorithm for a clustering problem

  • M. Grötschel
  • Y. Wakabayashi
Article

Abstract

In this paper we consider a clustering problem that arises in qualitative data analysis. This problem can be transformed to a combinatorial optimization problem, the clique partitioning problem. We have studied the latter problem from a polyhedral point of view and determined large classes of facets of the associated polytope. These theoretical results are utilized in this paper. We describe a cutting plane algorithm that is based on the simplex method and uses exact and heuristic separation routines for some of the classes of facets mentioned before. We discuss some details of the implementation of our code and present our computational results. We mention applications from, e.g., zoology, economics, and the political sciences.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Barahona, M. Grötschel, M. Jünger and G. Reinelt, “An application of combinatorial optimization to statistical physics and circuit layout design,”Operations Research 36 (1988) 493–513.Google Scholar
  2. J.P. Barthélemy and B. Monjardet, “The median procedure in cluster analysis and social choice theory,”Mathematical Social Sciences 1 (1981) 235–267.Google Scholar
  3. J.A. Bondy and U.S.R. Murty,Graph Theory with Applications (Macmillan, London, 1976).Google Scholar
  4. S. Chah, “Classification of heterogeneous data: micro computers,” Paper presented at the III International Symposium on Data Analysis (Brussels, 1985).Google Scholar
  5. H.P. Crowder and M.W. Padberg, “Solving large scale travelling salesman problems to optimality,”Management Science 26 (1980) 495–509.Google Scholar
  6. M. Grötschel, L. Lovász and A. Schrijver, “The ellipsoid method and its consequences in combinatorial optimization“,Combinatorica 1 (1981) 169–197.Google Scholar
  7. M. Grötschel, M. Jünger and G. Reinelt, “A cutting plane algorithm for the linear ordering problem“,Operations Research 32 (1984) 1195–1220.Google Scholar
  8. M. Grötschel and O. Holland, “Solving matching problems with linear programming,”Mathematical Programming 33 (1985) 243–259.Google Scholar
  9. M. Grötschel and Y. Wakabayashi, “Facets of the clique partitioning polytope”, Report No. 6, Schwerpunktprogramm der Deutschen Forschungsgemeinschaft Universität Augsburg (Augsburg, West Germany, 1987), to appear inMathematical Programming. Google Scholar
  10. J.A. Hartigan,Clustering Algorithms (Wiley, New York, 1975).Google Scholar
  11. J.F. Marcotorchino,Agrégation des Similarités en Classification Automatique, These de Doctorat d'état (Université Paris vi, 1981).Google Scholar
  12. J.F. Marcotorchino and P. Michaud, “Optimisation en analyse des données relationnelles,” in: E. Diday, et al. (eds.),Data Analysis and Informatics (North-Holland, Amsterdam, 1980) pp. 655–670.Google Scholar
  13. J.F. Marcotorchino and P. Michaud, “Optimization in exploratory data analysis,” Proceedings of 5th International Symposium on Operations Research 1981 (Physica Verlag, Köln, 1981a).Google Scholar
  14. J.F. Marcotorchino and P. Michaud, “Heuristic approach to the similarity aggregation problem,”Methods of Operations Research 43 (1981b) 395–404.Google Scholar
  15. O. Opitz and M. Schader, “Analyse qualitativer Daten: Einführung und Übersicht,”Operations Research Spektrum 6 (1984) 67–83.Google Scholar
  16. M. Padberg and G. Rinaldi, “Optimization of a 532-city symmetric traveling salesman problem by branch and cut,”Operations Research Letters 6 (1987) 1–7.Google Scholar
  17. G. Reinelt,The Linear Ordering Problem: Algorithms and Applications (Research and Exposition in Mathematics 8) (Helderman Verlag, Berlin, 1985).Google Scholar
  18. M. Schader and U. Tüshaus, “Ein Subgradientenverfahren zur Klassifikation qualitativer Daten,”Operations Research Spektrum 7 (1985) 1–5.Google Scholar
  19. A. Schrijver,Theory of Linear and Integer Programming (Wiley, Chichester, UK, 1986).Google Scholar
  20. H. Späth, “Partitionierende Cluster-Analyse für große Objektmengen mit binären Merkmalen am Beispiel von Firmen und deren Berufsgruppenbedarf,” in: H. Späth, (ed.),Fallstudien Cluster Analyse (Oldenburg, München, 1977) pp. 63–80.Google Scholar
  21. U. Tüshaus, “Aggregation binärer Relationen in der qualitativen Datenanalyse,” in:Mathematical Systems in Economics Vol 82 (Hain, Königstein, 1983).Google Scholar
  22. UNO, “Resolutions and Decisions adopted by the General Assembly during the first part of its thirty-ninth Session” (from Sept. 18 to Dec. 18, 1984), (1985) 412–419.Google Scholar
  23. G. Vescia, (a) “Descriptive classification of cetacea: whales, porpoises and dolphins,” (b) “Automatic classification of cetaceans by similarity aggregation,” in: J.F. Marcotorchino, J.M. Proth and J. Janssen, (eds.),Data Analysis in Real Life Environment: Ins and Outs of Solving Problems (Elsevier Science Publishers B.V. (North-Holland, Amsterdam, 1985) pp. 7–24.Google Scholar
  24. Y. Wakabayashi,Aggregation of Binary Relations: Algorithmic and Polyhedral Investigations, Ph.D. Thesis (Universität Augsburg, West Germany, 1986).Google Scholar

Copyright information

© North-Holland 1989

Authors and Affiliations

  • M. Grötschel
    • 1
  • Y. Wakabayashi
    • 2
  1. 1.Institut für MathematikUniversität AugsburgAugsburgWest Germany
  2. 2.Instituto de Mathemática e EstatísticaUniversidade de São PauloSão PauloBrazil

Personalised recommendations