Mathematical Programming

, Volume 49, Issue 1–3, pp 123–138 | Cite as

Implicit functions and sensitivity of stationary points

  • H. Th. Jongen
  • D. Klatte
  • K. Tammer


We consider the spaceL(D) consisting of Lipschitz continuous mappings fromD to the Euclideann-space ℝ n ,D being an open bounded subset of ℝ n . LetF belong toL(D) and suppose that\(\bar x\) solves the equationF(x) = 0. In case that the generalized Jacobian ofF at\(\bar x\) is nonsingular (in the sense of Clarke, 1983), we show that forG nearF (with respect to a natural norm) the systemG(x) = 0 has a unique solution, sayx(G), in a neighborhood of\(\bar x\) Moreover, the mapping which sendsG tox(G) is shown to be Lipschitz continuous. The latter result is connected with the sensitivity of strongly stable stationary points in the sense of Kojima (1980); here, the linear independence constraint qualification is assumed to be satisfied.

Key words

Implicit function stationary point strong stability Lipschitz continuity generalized Jacobian mapping degree 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F.M. Clarke,Optimization and Nonsmooth Analysis (Wiley, New York, 1983).Google Scholar
  2. [2]
    K. Deimling,Nichtlineare Gleichungen und Abbildungsgrade (Springer, Berlin-Heidelberg-New York, 1974).Google Scholar
  3. [3]
    H. Federer,Geometric Measure Theory (Springer, Berlin-Heidelberg-New York, 1969).Google Scholar
  4. [4]
    J. Guddat, Hj. Wacker and W. Zulehner, “On imbedding and parametric optimization”,Mathematical Programming Study 21 (1984) 79–96.Google Scholar
  5. [5]
    H.Th. Jongen, T. Moebert and K. Tammer, “On iterated minimization in nonconvex optimization,”Mathematics of Operations Research 11 (1986) 679–691.Google Scholar
  6. [6]
    H.Th. Jongen, T. Moebert, J. Rueckmann and K. Tammer, “On intertia and Schur complement in optimization,”Linear Algebra and its Applications 95 (1987) 97–109.Google Scholar
  7. [7]
    M. Kojima, “Strongly stable stationary solutions in nonlinear programs,” in: S.M. Robinson, ed.,Analysis and Computation of Fixed Points (Academic Press, New York, 1980) pp. 93–138.Google Scholar
  8. [8]
    B. Kummer, “Linearly and nonlinearly perturbed optimization problems,” in: J. Guddat, H.Th. Jongen, B. Kummer and F. Nožička, eds.,Parametric Optimization and Related Topics (Akademie Verlag, Berlin, 1987) pp. 249–267.Google Scholar
  9. [9]
    R. Lehmann, “On the numerical feasibility of continuation methods for nonlinear programming problems,”Mathematische Operationsforschung und Statistik, Series Optimization 15 (1984) 517–520.Google Scholar
  10. [10]
    J.M. Ortega and W. Rheinboldt,Iterative Solutions of Nonlinear Equations in Several Variables (Academic Press, New York, 1970).Google Scholar
  11. [11]
    D.V. Ouelette, “Schur complements and statistics,”Linear Algebra and its Applications 36 (1981) 187–295.Google Scholar
  12. [12]
    C. Richter, “Ein implementierbares Einbettungsverfahren der nichtlinearen Optimierung,”Mathematische Operationsforschung und Statistik, Series Optimization 15 (1984) 545–553.Google Scholar
  13. [13]
    S.M. Robinson, “Strongly regular generalized equations,”Mathematics of Operations Research 5 (1980) 43–62.Google Scholar
  14. [14]
    S.M. Robinson, “Generalized equations and their solutions, Part II: Applications to nonlinear programming,”Mathematical Programming Study 19 (1982) 200–221.Google Scholar

Copyright information

© The Mathematical Programming Society, Inc. 1990

Authors and Affiliations

  • H. Th. Jongen
    • 1
    • 4
  • D. Klatte
    • 2
  • K. Tammer
    • 3
  1. 1.Lehrstuhl C für MathematikRWTH AachenAachenFR Germany
  2. 2.Pädagogische Hochschule Halle-KötchenSektion Mathematik und PhysikHalle (Saale)GDR
  3. 3.Technische Hochschule LeipzigSektion Mathematik und InformatikLeipzigGDR
  4. 4.University of HamburgFR Germany

Personalised recommendations