Optical and Quantum Electronics

, Volume 24, Issue 9, pp S1071–S1079

Propagation of super-Gaussian field distributions

  • A. Parent
  • M. Morin
  • P. Lavigne
ABCD Law, Propagation and Higher Order Moments


The near- and far-field propagation of initially super-Gaussian field distributions is discussed. upon propagation, the beam profile is shown to undergo distortions of a magnitude which increases with the super-Gaussian order. These distortions can lead to a significant increase of the on-axis intensity in the near-field. The beam quality, evaluated both in terms of the beam parameter product and theM2 factor, is shown to decrease as the super-Gaussian order gets larger. These calculations also illustrate the difficulties associated with theM2 factor when characterizing the propagation of a beam with increasingly sharp edges. The effect of the transmission of the super-Gaussian field through a super-Gaussian graded-reflectivity mirror (GRM) is also discussed. The results of this study have direct implication in the domain of GRM resonator design.


  1. 1.
    A. PARENT and P. LAVIGNE,Appl. Opt. 28 (1989) 901.Google Scholar
  2. 2.
    S. DE SILVESTRI, V. MAGNI, O. SVELTO and G. VALENTINI,IEEE J. Quantum Electron. 26 (1990) 1500.Google Scholar
  3. 3.
    A. E. SIEGMAN,SPIE 1224 (1990) 2.Google Scholar
  4. 4.
    P. A. BÉLANGER,Opt. Lett. 16 (1991) 196.Google Scholar
  5. 5.
    A. E. SIEGMAN,IEEE J. Quantum Electron. 27 (1991) 1146.Google Scholar
  6. 6.
    A. PARENT, M. MORIN and P. LAVIGNE,Conference on Lasers and Electro-Optics, 1991 (Optical Society of America, Washington DC, 1991), p. 430.Google Scholar
  7. 7.
    A. E. SIEGMAN,Lasers (University Science Books, Mill Valley, 1986) p. 712.Google Scholar
  8. 8.
    N. McCARTHY and P. LAVIGNE,Appl. Opt. 23 (1984) 3845.Google Scholar
  9. 9.
    N. HODGSON, T. HAASE and H. WEBER,Proc. SPIE 1277 (1990).Google Scholar
  10. 10.
    M. W. SASNETT, Propagation of multimode laser beams — TheM 2 factor,The Physics and Technology of Laser Resonators. edited by D. R. Hall and P. E. Jackson, (Adam Hilger, Bristol, 1989) chapter 9.Google Scholar
  11. 11.
    J. W. GOODMAN,Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968) section 3.7.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • A. Parent
    • 1
  • M. Morin
    • 1
  • P. Lavigne
    • 1
  1. 1.National Optics InstituteSainte-FoyCanada

Personalised recommendations