Optical and Quantum Electronics

, Volume 24, Issue 9, pp S1011–S1019 | Cite as

ABCD law for partially coherent Gaussian light, propagating through first-order optical systems

  • M. J. Bastiaans
ABCD Law, Propagation and Higher Order Moments


This paper shows under what condition the well-knownABCD law — which can be applied to describe the propagation of one-dimensional Gaussian light through first-order optical systems (orABCD systems) — can be extended to more than one dimension. It is shown that in the two-dimensional (or higher-dimensional) case anABCD law only holds for partially coherent Gaussian light for which the matrix of second-order moments of the Wigner distribution function is proportional to a symplectic matrix. Moreover, it is shown that this is the case if we are dealing with a special kind of Gaussian Schell model light, for which the real parts of the quadratic forms that arise in the exponents of the Gaussians are described by the same real, positive-definite symmetric matrix.


  1. 1.
    G. A. DESCHAMPS,Proc. IEEE 60 (1972) 1022.Google Scholar
  2. 2.
    R. K. LUNEBURG,Mathematical Theory of Optics (University of California, Berkeley and Los Angeles, 1966).Google Scholar
  3. 3.
    H. KOGELNIK,Appl. Opt. 4 (1965) 1562.Google Scholar
  4. 4.
    H. KOGELNIK and T. LI,Proc. IEEE 54 (1966) 1312.Google Scholar
  5. 5.
    A. YARIV,Optical Electronics, 4th edn (Saunders College Publishing, Philadelphia, 1991).Google Scholar
  6. 6.
    M. J. BASTIAANS,J. Opt. Soc. Am. A 3 (1986) 1227.Google Scholar
  7. 7.
    R. SIMON, N. MUKUNDA and E. C. G. SUDARSHAN,Opt. Commun. 65 (1988) 322.Google Scholar
  8. 8.
    M. J. BASTIAANS,Optik 82 (1989) 173.Google Scholar
  9. 9.
    M. J. BASTIAANS,Optik 88 (1991) 163.Google Scholar
  10. 10.
    A. PAPOULIS,Systems and Transforms with Applications in Optics (McGraw-Hill, New York, 1968).Google Scholar
  11. 11.
    L. MANDEL and E. WOLF,J. Opt. Soc. Am 66 (1976) 529.Google Scholar
  12. 12.
    M. J. BASTIAANS,Opt. Acta 24 (1977) 261.Google Scholar
  13. 13.
    E. WIGNER,Phys. Rev. 40 (1932) 749.Google Scholar
  14. 14.
    H. MORI, I. OPPENHEIM and J. ROSS,Studies in Statistical Mechanics, vol. 1, edited by J. de Boer and G. E. Uhlenbeck (North-Holland, Amsterdam, 1962) p. 213.Google Scholar
  15. 15.
    N. G. De BRUIJN,Nieuw Archief voor Wiskunde 21(3) (1973) 205.Google Scholar
  16. 16.
    M. J. BASTIAANS,Opt. Commun. 25 (1978) 26.Google Scholar
  17. 17.
    M. J. BASTIAANS,J. Opt. Soc. Am. 69 (1979) 1710.Google Scholar
  18. 18.
    A. C. SCHELL,IEEE Trans. Antennas Propag. AP-15 (1967) 187.Google Scholar
  19. 19.
    R. SIMON, E. C. G. SUDARSHAN and N. MUKUNDA,Phys. Rev. A 31 (1985) 2419.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • M. J. Bastiaans
    • 1
  1. 1.Faculteit ElektrotechniekTechnische Universiteit EindhovenEindhovenNetherlands

Personalised recommendations