Journal of Fusion Energy

, Volume 9, Issue 4, pp 429–435 | Cite as

Deuteron disintegration in condensed media

  • M. Ragheb
  • G. H. Miley


We discuss the Oppenheimer-Phillips process as a possible phenomenon leading to deuteron disintegration due to polarization in the Coulomb field of a target nucleus. This reaction may be possible in the context of electrochemically compressed deuterons in a palladium cathode. The process is exothermic and may lead to neutron capture from the deuterons into the palladium isotopes, as well as between the deuterons themselves. In the last case, the equivalent of the proton branch of the D-D fusion reaction occurs in preference to the neutron branch. Such a process could provide a model for the processes involved in the observed energy release and tritium production in conjunction with neutron suppression in recent experiments. Possible interactions with Be and fertile isotopes are discussed in the context of breeding fissile isotopes in subcritical configurations.

Key words

Deuteron Oppenheimer-Philiips reaction disintegration palladium neutron capture tritium cold fusion fissile isotopes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Ragheb and G. H. Miley,Fusion Technol.,16, 247 (1989).Google Scholar
  2. 2.
    M. Fleischmann and S. Pons,J. Electroanal. Chem.,261, 301 (1989).Google Scholar
  3. 3.
    S. E. Jones et al.,Nature,338, 737 (1989).Google Scholar
  4. 4.
    R. Bussard,Fusion Technol.,16, 231 (1989).Google Scholar
  5. 5.
    J. Rand McNally,Fusion Technol.,16, 237 (1989).Google Scholar
  6. 6.
    V. C. Rogers and G. M. Sandquist,Fusion Technol.,16, 254 (1989).Google Scholar
  7. 7.
    W. M. Stacey, Jr.,Fusion Technol.,16, 269 (1989).Google Scholar
  8. 8.
    J. Rafelski and S. E. Jones,Sci. Amer.,257, 84 (1987).Google Scholar
  9. 9.
    T. Matsumoto,Fusion Technol.,16, 532 (1989).Google Scholar
  10. 10.
    G. Friedlander, J. W. Kennedy, and J. M. Miller,Nuclear and Radiochemistry, John Wiley and Sons, New York, 1964, p. 310.Google Scholar
  11. 11.
    J. R. Oppenheimer and M. Phillips,Phys. Rev.,48, 500 (1935).Google Scholar
  12. 12.
    F. W. Walker, G. J. Kirouac, and F. M. Rourke, Chart of the Nuclides, Knolls Atomic Power Laboratory (1977).Google Scholar
  13. 13.
    C. M. Lederer and V. S. Shirley, eds.,Table of Isotopes, John Wiley and Sons, New York, 1978.Google Scholar
  14. 14.
    I. Kaplan,Nuclear Physics, Addison-Wesley, Reading, Mass., 1966, p. 487.Google Scholar
  15. 15.
    R. D. Evans,The Atomic Nucleus, McGraw-Hill, New York, 1955, p. 294.Google Scholar
  16. 16.
    G. M. Volkoff,Phys. Rev.,57, 866 (1940).Google Scholar
  17. 17.
    H. A. Bethe,Phys. Rev.,53, 39 (1938).Google Scholar
  18. 18.
    M. Fleichmann, S. Pons, and R. J. Hoffman,Nature,339, 667 (1989).Google Scholar
  19. 19.
    R. D. Petrasso, X. Chen, K. W. Wenzel, R. R. Parker, C. K. Li, and C. Fiore,Nature,339, 183 (1989).Google Scholar
  20. 20.
    M. Ragheb, G. H. Miley, J. F. Stubbins, and C. Choi,J. Fusion Energy,4(5), 339 (1985).Google Scholar
  21. 21.
    M. Ragheb and S. Behtash,Nucl. Sci. Eng.,88, 16 (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • M. Ragheb
    • 1
  • G. H. Miley
    • 1
  1. 1.Department of Nuclear EngineeringUniversity of Illinois at Urbana-ChampaignUrbana

Personalised recommendations