Journal of Fusion Energy

, Volume 9, Issue 4, pp 409–411 | Cite as

Deuteron tunneling at electron-volt energies

  • Gary S. Collins
  • James S. Walker
  • John W. Norbury


We speculate on a new mechanism for deuteron-deuteron fusion reactions at electron-volt energies. Appealing to conservation principles, it is shown that deuteron tunneling leading to fusion is very unlikely to take place between two isolated deuterons. It is argued that in solids, however, tunneling may lead to fusion via a new reaction mechanism which populates energy levels of4He, with simultaneous energy transfer to an electron. Predictions of this theory are that d+d+e fusion at electron-volt energies in solids should lead to copious production of tritium, protium, energetic electrons, and small quantities of4He.

Key words

Fusion (theory) cold fusion deuteron tunneling nuclear reactions electron conversion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Fleischmann, S. Pons, and M. Hawkins,J. Electroanal. Chem. 261, 301 (1989), and Erratum.Google Scholar
  2. 2.
    S. E. Jones, E. P. Palmer, J. B. Czirr, D. L. Decker, G. L. Jensen, J. M. Thorne, S. F. Taylor, and J. Rafelski,Nature 338, 737 (1989).Google Scholar
  3. 3.
    Abbreviations used are p=1H, d=2H, t=3H, n=neutron, e=electron, andK=kinetic energy.Google Scholar
  4. 4.
    K. S. Krane,Introductory Nuclear Physics, (John Wiley, New York, 1988).Google Scholar
  5. 5.
    G. Breit and M. E. Ebel,Phys. Rev. 103, 679 (1956).Google Scholar
  6. 6.
    H. L. Reynolds and A. Zucker,Phys. Rev. 101, 166 (1956).Google Scholar
  7. 7.
    R. M. May and D. D. Clayton,Astrophys. J. 153, 855 (1968).Google Scholar
  8. 8.
    G. S. Collins, J. W. Norbury, G. E. Tripard, and J. S. Walker (Unpublished).Google Scholar
  9. 9.
    C. DeW. Van Siclen and S. E. Jones,J. Phys. G Nucl. Phys. 12, 213 (1986).Google Scholar
  10. 10.
    We ignore elastic d-d scattering because it does not lead to energy release.Google Scholar
  11. 11.
    S. Fiarman and W. E. Meyerhof,Nucl. Phys. A206, 1 (1973).Google Scholar
  12. 12.
    The angular momentum of the state at 25.5 MeV is uncertain and that state is ignored in our analysis (see Ref. 11.)Google Scholar
  13. 13.
    Thinking heuristically of tunneling as a scattering process, this means that the reaction can take place only when the deuterons' spins are opposed. Tunneling withJ π=2 would lead to no reaction.Google Scholar
  14. 14.
    Tocompare the transition probabilities for electron conversion to differentI=0 states, we use the energy dependence on the internal conversion coefficient α(0) from Ref.4, Eq. 10.26.Google Scholar
  15. 15.
    If these d+d+e tunneling reactions produce the energy production reported in Ref. 1, then there will be significant radiation hazards from energetic electrons and radioactive tritium.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Gary S. Collins
    • 1
  • James S. Walker
    • 1
  • John W. Norbury
    • 1
    • 2
  1. 1.Department of PhysicsWashington State UniversityPullman
  2. 2.Department of Mathematics and PhysicsRider CollegeLawrenceville

Personalised recommendations