Advertisement

Optimal structural design for given deflection

  • Richard T. Shield
  • William Prager
Original Papers

Keywords

Mathematical Method Structural Design Optimal Structural Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Es wird ein Prinzip der stationären gegenseitigen potentiellen Energie aufgestellt für zwei Belastungssysteme eines elastischen Balkens veränderlicher Biegesteifigkeit. Aus diesem Prinzip wird eine hinreichende Bedingung für stationäres Gewicht eines Sandwichbalkens abgeleitet, wenn die von einer Belastung an einem bestimmten Querschnitt erzeugte Durchbiegung vorgeschrieben ist. Für statisch bestimmte Balken wird gezeigt, dass diese Bedingung ein globales Minimum des Gewichts sicherstellt. Anwendungsbeipiele und Erweiterungen werden besprochen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. L. Lagrange,Sur la figure des colonnes, Miscellanea Taurinensia, Vol. 5, 1773=Oeuvres de Lagrange, Vol. 2 (Gauthier-Villars, Paris 1868), pp. 125–170.Google Scholar
  2. [2]
    W. Prager andJ. E. Taylor,Problems of Optimal Structural Design, J. appl. Mech.35, 102 (1968).Google Scholar
  3. [3]
    W. Prager andR. T. Shield,Optimal Design of Multi-purpose Structures, Internat. J. Solids Structures4, 469 (1968).Google Scholar
  4. [4]
    C. Y. Sheu andW. Prager,Minimum-weight Design with Piecewise Constant Specific Stiffness, J. Optimiz. Theory Applicat.2, 179 (1968).Google Scholar
  5. [5]
    W. Prager,Optimality Criteria in Structural Design, Proc. Nat. Ac. Sci.61, 794 (1968).Google Scholar
  6. [6]
    G. A. Hegemier andW. Prager,On Michell Trusses, Internat. J. Mech. Sci.11, 209 (1969).Google Scholar
  7. [7]
    W. Prager,Optimality Criteria Derived from Classical Extremum Principles, in:An Introduction to Structural Optimization, University of Waterloo (Waterloo, Ontario, Canada, 1969). p. 165–178.Google Scholar
  8. [8]
    L. J. Icerman,Optimal Structural Design for Given Dynamic Deflection, Internat. J. Solids Struct.5, 473 (1969).Google Scholar
  9. [9]
    W. Prager,Optimal Structural Design for Given Stiffness in Stationary Creep, Z. angew. Math. Phys.19, 252 (1968).Google Scholar
  10. [10]
    J. E. Taylor,The Strongest Column — An Energy approach, J. appl. Mech.34, 486 (1967).Google Scholar
  11. [11]
    J. E. Taylor andC. Y. Liu,Optimal Design of Columns, AIAA J.6, 1497 (1968).Google Scholar
  12. [12]
    J. E. Taylor,Minimum-mass Bar for Axial Vibration at Specified Natural Frequency, AIAA J.5, 1911 (1967).Google Scholar
  13. [13]
    J. E. Taylor,Optimum Design of a Vibrating Bar with Specified Minimum Cross Section, AIAA J.6, 1379 (1968).Google Scholar
  14. [14]
    C. Y. Sheu,Elastic Minimum Weight Design for Specified Fundamental Frequency Internat. J. Solids Struct.4, 953 (1968).Google Scholar
  15. [15]
    C. Y. Sheu andW. Prager,Optimal Plastic Design of Circular and Annular Sandwich Plates with Piecewise Constant Cross Section, J. Mech. Phys. Solids17, 11 (1969).Google Scholar
  16. [16]
    D. C. Drucker andR. T. Sheield,Design for Minimum Weight, Proc. 9th Internat. Congr. appl. Mech., Brussels 1956, Vol. 5,212–222.Google Scholar
  17. [17]
    R. L. Barnett,Minimum-weight Design of Beams for Deflection, Proc. ASCE87, EM1, 75 (1961).Google Scholar
  18. [18]
    E. J. Haug, jr. andP. G. Kirmser,Minimum Weight Design with Inequality Constraints on Stress and Deflection, J. appl. Mech.34, 999 (1967);N. C. Huang andH. T. Tang,Minimum weight Design of Elastic Sandwich Beams with Deflection Constraints, J. Optimiz. Theory Applicat.4, 277 (1969).Google Scholar
  19. [19]
    E. J. Haug, Jr., T. D. Streeter andR. S. Newell,Optimal Design of Elastic Structural Elements, Report SY-RI-69, Systems Analysis Directorate, U.S. Army Weapons Command, Rock Island, Ill., 1969.Google Scholar

Copyright information

© Birkhäuser-Verlag 1970

Authors and Affiliations

  • Richard T. Shield
    • 1
  • William Prager
    • 2
  1. 1.Div. of Eng. and Applied ScienceCalifornia Institute of TechnologyPasadena
  2. 2.Div. of Eng. and Applied MathematicsBrown UniversityProvidenceUSA

Personalised recommendations