Mathematical Programming

, Volume 44, Issue 1–3, pp 127–137 | Cite as

Experiments in quadratic 0–1 programming

  • F. Barahona
  • M. Jünger
  • G. Reinelt


We present computational experience with a cutting plane algorithm for 0–1 quadratic programming without constraints. Our approach is based on a reduction of this problem to a max-cut problem in a graph and on a partial linear description of the cut polytope.

Key words

Cutting plane algorithm polytopes facets quadratic 0–1 programming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. E. Balas and J.B. Mazzola (1984), “Nonlinear 0–1 programming: I. Linearization techniques and II. Dominance relations and algorithms,”Mathematical Programming 30 (1984) 1–45.Google Scholar
  2. F. Barahona (1986), “A solvable case of quadratic 0–1 programming,”Discrete Applied Mathematics 13 (1986) 23–26.Google Scholar
  3. F. Barahona and A. Casari (1988), “On the magnetization of the ground states in two-dimensional Ising spin glasses,”Computer Physics Communications 49 (1988) 417–421.Google Scholar
  4. F. Barahona, M. Grötschel, M. Jünger and G. Reinelt (1988), “An application of combinatorial optimization to statistical physics and circuit layout design,”Operations Research 36 (1988) 493–513.Google Scholar
  5. F. Barahona and A.R. Mahjoub (1986), “On the cut polytope,”Mathematical Programming 36(1) (1986) 157–173.Google Scholar
  6. M.W. Carter (1984), “The indefinite zero-one quadratic problem,”Discrete Applied Mathematics 7 (1984) 23–44.Google Scholar
  7. M.R. Garey and D.S. Johnson (1979),Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979).Google Scholar
  8. M. Grötschel, M. Jünger and G. Reinelt (1984), “A cutting plane algorithm for the linear ordering problem,”Operations Research 32 (1984) 1195–1220.Google Scholar
  9. P.L. Hammer (1965), “Some network flow problems solved with pseudo-Boolean programming,”Operations Research 13 (1965) 388–399.Google Scholar
  10. P.L. Hammer, P. Hansen and P. Simeone (1984), “Roof duality, complementation and persistence in quadratic 0–1 optimization,”Mathematical Programming 28 (1984) 121–155.Google Scholar
  11. M.W. Padberg and G. Rinaldi (1986), “Optimization of a 532-city symmetric travelling salesman problem by branch and cut,”Operations Research Letters 6 (1987) 1–7.Google Scholar
  12. J.C. Picard and H.D. Ratliff (1974), “Minimum cuts and related problems,”Networks 5 (1974) 357–370.Google Scholar
  13. A.C. Williams (1985), “Quadratic 0–1 programming using the roof dual with computational results,” RUTCOR Research Report #8-85, The State University of New Jersey (New Brunswick, NJ, 1985).Google Scholar

Copyright information

© The Mathematical Programming Society, Inc. 1989

Authors and Affiliations

  • F. Barahona
    • 1
  • M. Jünger
    • 2
  • G. Reinelt
    • 2
  1. 1.Department of Combinatorics and OptimizationUniversity of WaterlooWaterlooCanada
  2. 2.Institut für MathematikUniversität AugsburgAugsburgFRG

Personalised recommendations