pure and applied geophysics

, Volume 118, Issue 1, pp 152–176

An introduction to the generalized Lagrangian-mean description of wave, mean-flow interaction

  • M. E. McIntyre
Article

Abstract

The generalized Lagrangian-mean description is motivated and illustrated by means of some simple examples of interactions between waves and mean flows, confining attention for the most part to waves of infinitesimal amplitude. The direct manner in which the theoretical description leads to the wave-action concept and related results, and also to the various ‘noninteraction’ theorems, more accuratelynon-acceleration theorems, is brought out as simply as possible. Variational formulations are not needed in the analysis, which uses elementary principles only.

The significance of the generalized Eliassen-Palm relations as conservation equations for wave activity is discussed briefly, as is the significance of the temporal nonuniformity of the generalized Lagrangian-mean description for dissipating disturbances.

Key words

Wave mean-flow interaction Non-acceleration theorems Wave action 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, D. G. (1980),On the mean motion induced by transient inertio-gravity waves, Pure and Applied Geophys118, 177–188.Google Scholar
  2. Andrews, D. G. andMcIntyre, M. E. (1976a),Planetary waves in horizontal and vertical shear: the generalized Eliassen-Palm relation and the mean, zonal acceleration. J. Atmos. Sci.33, 2031–2048.Google Scholar
  3. Andrews, D. G. andMcIntyre, M. E. (1976b),Planetary waves in horizontal and vertical shear: asymptotic theory for equatorial waves in weak shear. J. Atmos. Sci.33, 2049–2053.Google Scholar
  4. Andrews, D. G. andMcIntyre, M. E. (1978a),Generalized Eliassen-Palm and Charney-Drazin theorems for waves on axisymmetric flows in compressible, atmospheres, J. Atmos. Sci.35, 175–185.Google Scholar
  5. Andrews, D. G. andMcIntyre, M. E. (1978b),An exact theory of non-linear waves on a Lagrangian-mean flow, J. Fluid. Mech.89, 609–646.Google Scholar
  6. Andrews, D. G. andMcIntyre, M. E. (1978c),On wave-action and its relatives., J. Fluid Mech.89, 647–664.Google Scholar
  7. Béland, M. (1978),The evolution of a nonlinear Rossby wave critical level: effects of viscosity, J. Atmos. Sci.35, 1802–1815.Google Scholar
  8. Boyd, J. (1976)The noninteraction of waves with the zonally-averaged flow on a spherical Earth and the interrelationships of eddy fluxes of energy, heat and momentum, J. Atmos. Sci.33, 2285–2291.Google Scholar
  9. Bretherton, F. P. (1969),Momentum transport by gravity waves. Quart. J. Roy. Meter. Soc.95, 213–243.Google Scholar
  10. Bretherton, F. P. (1971),The general linearized theory of wave propagation, §6, Lectures in Applied Mathematics, (American Math. Soc.),13 61–102.Google Scholar
  11. Bretherton, F. P. (1979),Conservation of wave action and angular momentum in a spherical atmosphere, J. Fluid Mech. (to appear).Google Scholar
  12. Bretherton, F. P. andGarrett, C. J. R. (1968),Wavetrains in inhomogeneous moving media, Proc. Roy. Soc. A302, 529–554.Google Scholar
  13. Bretherton, F. P. andHaidvogel, D. B. (1976),Two-dimensional turbulence above topography. J. Fluid Mech.78, 129–154.Google Scholar
  14. Brillouin, L. (1925).On radiation stresses (in French), Annales de Physique.4, 528–586.Google Scholar
  15. Brillouin, L. (1936),Radiation pressures and stresses (in French), Revue d'Acoustique,5, 99–111. See alsoBrillouin, L.,Tensors in mechanics and elasticity, (Academic-New York 1964).Google Scholar
  16. Charney, J. G. andDrazin, P. G. (1961),Propagation of planetary-scale disturbances from the lower into the upper atmosphere, J. Geophys. Res.66, 83–109.Google Scholar
  17. Danielsen, E. F. (1968),Stratospheric-tropospheric exchange based on radioactivity, ozone and potential vorticity, J. Atmos. Sci.,25, 502–518.Google Scholar
  18. Dewar, R. L. (1970),Interaction between hydromagnetic waves and a time-dependent inhomogeneous medium, Phys. Fluids13, 2710–2720.Google Scholar
  19. Dickinson, R. E. (1969),Theory of planetary wave-zonal flow interaction, J. Atmos. Sci.26, 73–81.Google Scholar
  20. Dunkerton, T. (1978),On the mean meridional mass motions of the stratosphere and mesosphere, J. Atmos. Sci.35, 2325–2333.Google Scholar
  21. Dunkerton, T. (1979a),On the role of the Kelvin wave in the westerly phase of the semiannual zonal wind oscillation, J. Atmos. Sci.36, 32–41.Google Scholar
  22. Dunkerton, T. (1979b),Lagrangian-mean theory of wave, mean-flow interaction with applications to non-acceleration and its breakdown, Revs. Geophys. and Space Phys. (submitted).Google Scholar
  23. Eckart, C. (1963),Some transformations of the hydrodynamic equations, Phys. Fluids6, 1037–1041.Google Scholar
  24. Edmon, H. J., Hoskings, B. J. andMcIntyre, M. E. (1980),Meridional cross-sections of the Eliassen-Palm flux and its divergence, J. Atmos., Sci. (to be submitted).Google Scholar
  25. Eliassen, A. andPalm, E. (1961),On the transfer of energy in stationary mountain waves, Geofys. Publ.22, 3, 1-23.Google Scholar
  26. Fels, S. B. andLindzen, R. S. (1974),The interaction of thermally excited gravity waves with mean flows, Geophys. Fluid Dyn.6 149–191.Google Scholar
  27. Frieman, E. andRotenberg, M. (1960),On hydromagnetic stability of stationary equilibria, Revs. Mod. Phys.32, 898–902.Google Scholar
  28. Grimshaw, R. H. J. (1975),Nonlinear internal gravity waves in a rotating fluia, J. Fluid Mech.,71, 497–512.Google Scholar
  29. Hayes, W. D. (1970),Conservation of action and modal wave, action, Proc. Roy. Soc. A320, 187–208.Google Scholar
  30. Hollweg, J. V. (1978),Some physical processes in the solar wind, Revs. Geophys. and Space Phys.16, 689–720.Google Scholar
  31. Holton, J. R. (1974),Forcing of mean flows by stationary waves, J. Atmos. Sci.31, 942–945.Google Scholar
  32. Holton, J. R. (1975),The dynamic meteorology of the stratosphere and mesosphere, Boston, Massachusetts, American Meteorological Society, 218 pp.Google Scholar
  33. Holton, J. R. andDunkerton, T. (1978),On the role of wave transience and dissipation in stratospheric mean flow vacillations, J. Atmos. Sci.35, 740–744.Google Scholar
  34. Holton, J. R. andLindzen, R. S. (1972),An updated theory for the quasi-biennial cycle of the tropical stratosphere, J. Atmos. Sci.29, 1076–1080.Google Scholar
  35. Holton, J. R. andMass, C. (1976),Stratospheric vacillation cycles, J. Atmos. Sci.33, 2218–2225.Google Scholar
  36. Krishnamurti, T. N. (1961),The subtropical jet stream of winter, J. Meterol.18, 172–191.Google Scholar
  37. Lighthill, M. J. (1978),Acoustic streaming, J. Sound Vib.61, 391–418.Google Scholar
  38. Mahlman, J. D. (1969),Heat balance and mean meridional circulations in the polar stratosphere during the sudden warming of January 1958, Mon. Wea. Rev.97, 534–540.Google Scholar
  39. Matsuno, T. (1971),A dynamical model of the stratospheric sudden warming, J. Atmos. Sci.28, 1479–1494.Google Scholar
  40. Matsuno, T. (1980),Lagrangian motion of air parcels in the stratosphere in the presence of planetary waves, Pure and Applied Geophys.118, 189–216.Google Scholar
  41. McIntyre, M. E. (1973),Mean motions and impulse of a guided internal gravity wave packet J. Fluid Mech.60, 801–811.Google Scholar
  42. McIntyre, M. E. (1977),Wave transport in stratified, rotating fluids.Springer Lecture Notes in Physics, 71, 290–314 (ed. E. A. Spiegel and J. P. Zahn). (The statement on p. 303 line 27 is wrong; but see eq. (5.2) on p. 311.)Google Scholar
  43. McIntyre, M. E. (1979),Towards a Lagrangian-mean description of stratospheric circulations and chemical transports, Phil. Trans. Roy. Soc. London, A, to appear (Middle Atmosphere issue).Google Scholar
  44. McIntyre, M. E., andWeissman, M. A. (1978),On radiating instabilities and resonant over-reflection, J. Atmos. Sci.35, 1190–1196.Google Scholar
  45. Moffett, M. B., Westervelt, P. J. andBeyer, R. T. (1971),Large-amplitude pulse propagation-a transient effect. II, J. Acoust. Soc. Amer.49, 339–343.Google Scholar
  46. Peierls, R. (1976),The momentum of light in a refracting medium, Proc. Roy. Soc. A347, 475–491.Google Scholar
  47. Plumb, R. A. (1975),Momentum transport by the thermal tide in the stratosphere of Venus, Quart. J. Roy. Met. Soc.101, 763–776.Google Scholar
  48. Plumb, R. A. (1977),The interaction of two internal waves with the mean flow: implications for the theory of the quasi-biennial oscillation, J. Atmos. Sci.34, 1847–1858.Google Scholar
  49. Plumb, R. A. andMcEwan, A. D. (1978),The instability of a forced standing wave in a viscous, stratified fluid: A laboratory analogue of the quasi-biennial oscillation J. Atmos. Sci.35, 1827–1839.Google Scholar
  50. Rhines, P. B. (1977),The dynamics of unsteady currents, inThe Sea: Ideas and Observations on Progress in the Study of the Seas, Vol. 6, 189–318, (ed. E. D. Goldberg).Google Scholar
  51. Rhines, P. B. andHolland, W. R. (1979),A theoretical discussion of eddy-driven mean flows, Dyn. Atmos. Oceans (to appear).Google Scholar
  52. Riehl, H. andFultz, D. (1957),Jet stream and long waves in a steady rotating-dishpan experiment: structure of the circulation, Quart J. Roy. Meteorol Soc.83, 215–231.Google Scholar
  53. Soward, A. M. (1972),A kinematic theory of large magnetic Reynolds number dynamos, Phil. Trans. Roy, Soc. A,272, 431–462.Google Scholar
  54. Stewartson, K. (1978),The evolution of the critical layer of a Rossby wave, Geophys. Astrophys. Fluid Dyn.9, 185–200.Google Scholar
  55. Tung, K. K. (1979),A theory of stationary long waves. Part III: Quasi-normal modes in singular wave-guide, J. Atmos. Sci36 (to appear).Google Scholar
  56. Uryu, M. (1980),Acceleration of mean zonal flows by planetary waves, Pure and Applied Geophys.,118, 661–693.Google Scholar
  57. Warn, T. andWarn, H. (1978),The evolution of a nonlinear critical level, Studies in Appl. Math.59, 37–71.Google Scholar

Copyright information

© Birkhäuser Verlag 1980

Authors and Affiliations

  • M. E. McIntyre
    • 1
  1. 1.National Center for Atmospheric ResearchBoulderUSA
  2. 2.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeEngland

Personalised recommendations