Advertisement

pure and applied geophysics

, Volume 118, Issue 1, pp 128–151 | Cite as

The importance of energetic particle precipitation on the chemical composition of the middle atmosphere

  • Richard Mansergh Thorne
Article

Abstract

An assessment is made of the relative contribution of certain classes of energetic particle precipitation to the chemical composition of the middle atmosphere with emphasis placed on the production of odd nitrogen and odd hydrogen species and their subsequent role in the catalytic removal of ozone. Galactic cosmic radiation is an important source of odd nitrogen in the lower stratosphere but since the peak energy deposition occurs below the region where catalytic removal of O3 is most effective, it is questionable whether this mechanism is important in the overall terrestrial ozone budget. The precipitation of energetic solar protons can periodically produce dramatic enhancement in upper stratospheric NO. The long residence time of NO in this region of the atmosphere, where catalytic interaction with O3 is also most effective, mandates that this mechanism be included in future modelling of the global distribution of O3. Throughout the mesosphere the precipitation of energetic electrons from the outer radiation belt (60°≲Λ≲70°) can sporadically act as a major local source of odd hydrogen and odd nitrogen leading to observable O3 depletion. Future satellite studies should be directed at simultaneously measuring the precipitation flux and the concomitant atmosphere modification, and these results should be employed to develop more sophisticated models of this important coupling.

Key words

Galactic cosmic rays Solar proton events Particle precipitation Chemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andronov, A. A. andTrakhtengerts V. Y. (1964),Kinetic instability of the Earth's outer radiation belt. Geomagnet. Aeron.4, 181.Google Scholar
  2. Angell, J. K. andKorshover, J. (1973),Quasi-biennial and long-term fluctuations in total ozone. Mon. Wea. Rev.101, 426.Google Scholar
  3. Arnold, F. andKrankowsky, D. (1977),Ion composition and electron and ion loss processes in the Earth's atmosphere, inDynamical and chemical coupling between the neutral and ionized atmosphere, ed. B. Grandal and J. A. Holtet, D. Reidel Pub. Co., p. 93.Google Scholar
  4. Arnold, F., Krankowsky, D. andMarion, K. H. (1977),First mass spectrometric measurements of positive ion in the stratosphere, Nature267, 30.Google Scholar
  5. Ashour-Abdalla, M. andThorne, R. M. (1978),Towards a unified view of diffuse auroral precipitation, J. Geophys. Res.83, 4755.Google Scholar
  6. Bailey, D. K. (1959),Abnormal ionization in the lower ionosphere associated with cosmic-ray flux enhancements, Proc. I.R.E.47, 255.Google Scholar
  7. Bailey, D. K. (1968),Some quantitative aspects of electron precipitation in and near the auroral zone, Rev. Geophys.6, 289.Google Scholar
  8. Bailey, D. K. andPomerantz, M. A. (1965),Relativistic electron precipitation into the mesosphere at sub auroral latitudes, J. Geophys. Res.70, 5823.Google Scholar
  9. Barth, C. A. (1966),Nitric oxide in the upper atmosphere, Ann. Geophys.22, 198.Google Scholar
  10. Bates, D. R. andHays, P. B. (1967),Atmospheric nitrous oxide, Planet. Space. Sci.15, 189.Google Scholar
  11. Bates, D. R. andNicolet, M. (1950)The photochemistry of water vapor, J. Geophys. Res.55, 301.Google Scholar
  12. Belrose, J. S. andThomas, L. (1968),Ionization changes in the middle latitude D-region associated with geomagnetic storms, J. Atmos. Terr. Phys.30, 1397.Google Scholar
  13. Belrose, J. S., Davenport, M. H. andWeeks, K. (1956),Some unusual radio observations made on 23 February 1956. J. Atmos. Terr. Phys.8, 281.Google Scholar
  14. Berger, M. J. andSeltzer, S. M. (1972),Bremsstrahlung in the atmosphere, J. Atmos. Terr. Phys.34, 85.Google Scholar
  15. Berger, M. J., Seltzer, S. M. andMaeda, K. (1974),Some new results on electron transport in the atmosphere, J. Atmos. Terr. Phys.36, 591.Google Scholar
  16. Bowen, K. S., Millikan, R. A. andHeher, H. V. (1938),New light on the nature and origin of the incoming cosmic rays, Phys. Rev.53, 855.Google Scholar
  17. Brasseur, G. andNicolet, M. (1973),Chemospheric processes of nitric oxide in the mesosphere and stratosphere, Planet. Space Sci.21, 939.Google Scholar
  18. Chapman, S. A. (1930),A theory of upper atmospheric ozone, Quart. J. Roy. Met. Soc.3, 103.Google Scholar
  19. Coroniti, F. V. andThorne, R. M. (1973),Magnetospheric electrons, Ann. Rev. Earth Planet. Sci.1, 107.Google Scholar
  20. Crutzen, P. J. (1970),The influence of nitrogen oxides on the atmospheric ozone content, Quart. J. Roy. Met. Soc.96, 320.Google Scholar
  21. Crutzen, P. J. (1971),Ozone production rates in an oxygen-hydrogen-nitrogen oxide atmosphere, J. Geophys. Res.76, 7311.Google Scholar
  22. Crutzen, P. J. andHoward, C. J. (1978),The effect of the HO2+NOreaction rate constant on one-dimensional model calculations of stratospheric ozone perturbations, Pure and Applied Geophys.116, 497.Google Scholar
  23. Crutzen, P. J., Isaksen, I. S. A. andReid, G. C. (1975),Solar proton events: stratospheric sources of nitric oxide, Science189, 457.Google Scholar
  24. Dalgarno, A. (1967),Atmospheric reactions with energetic particles, Space Res.7, 899.Google Scholar
  25. Eather, R. H., Mende, S. B. andJudge, R. J. R. (1976),Plasma injection at synchronous orbit and spatial and temporal auroral morphology, J. Geophys. Res.81, 2805.Google Scholar
  26. Ellison, M. A. andReid, J. H. (1956),A long wave anomaly associated with the arrival of cosmicray particles of solar origin on 23 February 1956, J. Atmos. Terr. Phys.8, 291.Google Scholar
  27. Fabian, P., Pyle, J. A. andWells, R. J. (1979),The August 72 solar proton event and the atmospheric zone layer, Nature277, 458.Google Scholar
  28. Ferguson, E. E. (1974),Laboratory measurements of ionospheric ion-molecule reaction rates, Rev. Geophys. Space Phys.12, 703.Google Scholar
  29. Forbush, S. E. (1958),Cosmic-ray intensity variation during two solar cycles, J. Geophys. Res.63, 651.Google Scholar
  30. Frederick, J. E. (1976),Solar corpuscular emission and neutral chemistry in the Earth's middle atmosphere, J. Geophys. Res.81, 3179.Google Scholar
  31. Gunton, R. C., Meyeroff, R. E. andReagan, J. B. (1977),Ion and neutral chemistry of the Dregion during the intense solar particle event of August 1972, Lockheed Report D556351.Google Scholar
  32. Heaps, M. G. (1978),The effect of a solar proton event on the minor neutral constituents of the summer polar mesosphere, U.S. Army Atmospheric Sci. Laboratory Report ASL-TR-0012Google Scholar
  33. Heath, D. F., Krueger, A. J. andCrutzen, P. J. (1977),Solar proton event: Influence on stratospheric ozone, Science197, 886.Google Scholar
  34. Johannesen, A. andKrankowski, D. (1972),Positive-ion composition measurement in the upper mesosphere and lower thermosphere at high latitude during summer, J. Geophys. Res.77, 2888.Google Scholar
  35. Johnston, H. S. (1971),Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust, Science173, 517.Google Scholar
  36. Johnston, H. S. (1974),Photochemistry in the stratosphere, Acta. Astron.1, 135.Google Scholar
  37. Johnston, H. S. (1975),Global ozone balance in the natural stratosphere, Rev. Geophys. Space Phys.13, 637.Google Scholar
  38. Johnston, H. S. andPodolske, J. (1978),Interpretations of stratospheric photochemistry, Rev. Geophys. Space Phys.16, 491.Google Scholar
  39. Kennel, C. F. (1969),Consequences of a magnetospheric plasma, Rev. Geophys.7, 379.Google Scholar
  40. Kennel, C. F. andPetschek, H. E. (1966),Limit on stably trapped particle fluxes, J. Geophys. Res.71, 1.Google Scholar
  41. King, J. H. (1974),Solar proton influences for 1977–1983 space missions, J. Spacecrafts and Rockets,11, 401.Google Scholar
  42. Larsen, T. R. andThomas, G. R. (1974),Energy spectra measured during a relativistic electron precipitation event on 2 February 1969, J. Atmos. Terr. Phys.36, 1613.Google Scholar
  43. Larsen, T. R., Reagan, J. B., Imhof, W. I., Montbrand, L. E. andBelrose, L. S. (1976),A coordinated study of energetic electron precipitation and D-region electron concentration over Ottawa during disturbed conditions, J. Geophys. Res.81, 2200.Google Scholar
  44. Larsen, T. R., Potemra, T. A., Imhof, W. L. andReagan, J. B. (1977),Energetic electron precipitation and VLF phase disturbances at middle latitudes following the magnetic storm of December 16, 1971, J. Geophys. Res.82, 1519.Google Scholar
  45. Lauter, E. A. andKnuth, R. (1967),Precipitation of high energy particles into the upper atmosphere at medium latitudes after magnetic storms, J. Atmos. Terr. Phys.29, 411.Google Scholar
  46. Luhmann, J. G. (1977),Auroral Bremsstrahlung spectra in the atmosphere, J. Atmos. Terr. Phys.39, 595.Google Scholar
  47. Lui, A. T. Y., Venkatesan, D., Anger, C. D., Akasofu, S. I., Meikkila, W. J., Winningham, J. D. andBurrows, J. R. (1977),Simultaneous observations of particle precipitations and auroral emissions by the ISIS 2 satellite in the 19-24 MLT sector, J. Geophys. Res.82, 2210.Google Scholar
  48. Lüst, R. andSimpson, J. A. (1957),Initial stages in the propagation of cosmic rays produced by solar flares, Phys. Rev.108, 1563.Google Scholar
  49. Lyons, L. R. andThorne, R. M. (1972),Parasitic pitch-angle diffusion of radiation belt particles by ion-cyclotron waves, J. Geophys. Res.77, 5608.Google Scholar
  50. Lyons, L. R. andWilliams, D. J. (1975),The storm and post-storm evolution of energetic (35–560 keV) radiation belt electron distribution, J. Geophys. Res.80, 3985.Google Scholar
  51. Lyons, L. R., Thorne, R. M. andKennel, C. F. (1971),Electron pitch-angle diffusion driven by oblique whistler-mode turbulence, J. Plasma Phys.6, 589.Google Scholar
  52. Lyons, L. R., Thorne, R. M. andKennel, C. F. (1972),Pitch-angle diffusion of radiation belt electrons within the plasmasphere, J Geophys. Res.77, 3455.Google Scholar
  53. McElroy, M. B. andMcConnell, J. (1971),Nitrous oxide: A natural source of stratospheric NO, J. Atmos. Sci.28, 1095.Google Scholar
  54. McElroy, M. B., Wofsy, S. C., Penner, J. E. andMcConnell, J. C. (1974),Atmospheric ozone: Possible impact of stratospheric aviation, J. Atmos. Sci.31, 287.Google Scholar
  55. Meira, L. G. (1971),Rocket measurements of upper atmospheric nitric oxide and their consequences to the lower ionosphere, J. Geophys. Res.76, 202.Google Scholar
  56. Meyer, P., Parker, E. N. andSimpson, J. A. (1956),Solar cosmic rays of February 1956 and their propagation through interplanetary space. Phys. Rev.104, 768.Google Scholar
  57. Molina, M. J. andRowland, F. S. (1974),Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone, Nature249, 810.Google Scholar
  58. Narcisi, R. S. andBailey, A. D. (1965),Mass spectrometric measurements of positive ions at altitudes from 64 to 112 kilometers, J. Geophys. Res.70, 3687.Google Scholar
  59. Narcisi, R. S., Philbrick, C. R., Ulwick, J. C. andGardner, M. E. (1972),Mesospheric nitricoxide concentrations during a PCA, J. Geophys. Res.77, 1332.Google Scholar
  60. Neher, H. V. andAnderson, H. R. (1962),Cosmic rays at balloon altitudes and the solar cycle, J. Geophys. Res.67, 1309.Google Scholar
  61. Nicolet, M. (1965),Ionospheric processes and nitric oxide, J. Geophys. Res.70, 691.Google Scholar
  62. Nicolet, M. (1970),Aeronomic reactions of hydrogen and ozone, Aeronomica Acta.A79, 1.Google Scholar
  63. Nicolet, M. (1975),On the production of nitric oxide by cosmic rays in the mesosphere and stratosphere, J. Geophys. Res.23, 637.Google Scholar
  64. Nicolet, M. andPeetermans, W. (1972),The production of nitric oxide in the stratosphere by oxidation of nitrous oxide, Ann. Geophys.28, 751.Google Scholar
  65. Norton, R. B. andBarth, C. A. (1970),Theory of nitric oxide in the Earth's atmosphere, J. Geophys. Res.75, 3903.Google Scholar
  66. Oran, E. S., Julienne, P. S. andStrobel, D. F. (1975),The aeronomy of odd nitrogen in the thermosphere, J. Geophys. Res.80, 3068.Google Scholar
  67. Owens, H. D. andFrank, L. A. (1968),Electron omnidirectional intensity contours in the Earth's outer radiation zone at the magnetic equator, J. Geophys. Res.73, 199.Google Scholar
  68. Paetzold, H. K., Piscalor, F. andZsehorner, H. (1972),Secular variation of the stratospheric ozone layer over middle Europe during the solar cycles from 1951 to 1972, Nature240, 106.Google Scholar
  69. Pfitzer, K. A. andWinckler, J. R. (1968),Experimental Observations of a large addition to the electron inner radiation belt after a solar flare event, J. Geophys. Res.73, 5792.Google Scholar
  70. Porter, H. S., Jackman, C. H. andGreen, A. E. S. (1976),Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air, J. Chem. Phys.65, 154.Google Scholar
  71. Preston, K. F. andBarr, R. F. (1971),Primary processes in the photolysis of nitrous oxide, J. Chem. Phys.52, 3347.Google Scholar
  72. Rapp, D., Englander-Golden, D. andGriglia, D. D. (1965),Cross sections for dissociative ionization of molecules by electron impact, J. Chem. Phys.42, 4081.Google Scholar
  73. Reagan, J. B. (1977),Ionization processes, inDynamical and chemical coupling of neutral and ionized atmospheres, ed. B. Grandal and J. A. Holtet, p. 145, D. Reidel Pub. Co.Google Scholar
  74. Reagan, J. B., Gunton, R. C., Evans, J. E., Nightingale, R. W., Johnson, R. G., Imhof, W. L. andMeyerott, R. E. (1978),Effects of the August 1972 solar particle events on stratospheric ozone, Lockheed Report D630455.Google Scholar
  75. Reid, G. C. (1961),A study of the enhanced ionization produced by solar protons during a polar cap absorption event, J. Geophys.66, 4071.Google Scholar
  76. Roberts, C. S. (1969),Pitch angle diffusion of electrons in the magnetosphere, Rev. Geophys.7, 305.Google Scholar
  77. Roble, R. G. andRees, M. H. (1977),Time-dependent studies of the aurora: Effects of particle precipitation on the dynamic morphology of ionospheric and atmospheric properties, Planet. Space Sci.25, 991.Google Scholar
  78. Rosenberg, T. J., Lanzeratti, L. J., Bailey, D. K., andPierson, J. D. (1972),Energy spectra in relativistic electron precipitation events, J. Atmos. Terr. Phys.34, 1977.Google Scholar
  79. Rowe, J. N., Mitra, A. P., Ferraro, A. J. andLee, H. S. (1974),An experimental and theoretical study of the D-region-II. A semi-empirical model for mid-latitude D-region, J. Atmos. Terr. Phys.36, 755.Google Scholar
  80. Ruderman, M. A. andChamberlain, J. W. (1975),Origin of the sun-spot modulation of ozone: Its implications for stratospheric NOinjection, Planet. Space Sci.23, 247.Google Scholar
  81. Ruderman, M. A., Foley, H. M. andChamberlain, J. W. (1976),Eleven year variation in polar ozone and stratospheric chemistry, Science192, 555.Google Scholar
  82. Russell, C. T. andThorne, R. M. (1970),On the structure of the inner magnetosphere, Cosmic Electrodynamics1, 67.Google Scholar
  83. Sechrist, C. F. Jr. (1972),Theoretical models of the D-region, J. Atmos. Terr. Phys.34, 1565.Google Scholar
  84. Spjeldvik, W. N. andThorne, R. M. (1975),The cause of storm after effects in the middle latitude D-region, J. Atmos. Terr. Phys.37, 777.Google Scholar
  85. Stolarski, R. S. andCicerone, R. J. (1974),Stratospheric chlorine: A possible sink for ozone, Can. J. Phys.52, 1610.Google Scholar
  86. Strobel, D. F. (1971a),Diurnal variation of nitric oxede in the upper atmosphere, J. Geophys. Res.76, 2441.Google Scholar
  87. Strobel, D. F. (1971b),Odd nitrogen in the mesosphere, J. Geophys. Res.76, 8334.Google Scholar
  88. Strobel, D. F. (1972),Nitric Oxide in the D-region, J. Geophys. Res.77, 1337.Google Scholar
  89. Strobel, D. F., Hunten, D. M. andMcElroy, M. B. (1970),Production and diffusion of nitric oxide, J. Geophys. Res.75, 4307.Google Scholar
  90. Svestka, Z. (1970),Solar particle events, Space Res.10, 797.Google Scholar
  91. Svestka, Z. (1972),Characteristics of strong particle sources on the Sun, Proc. COSPAR Symp. on Solar Particle Event of November 1969, ed. J. C. Ulwick, Rep. AFCRL-72-0474, p. 1.Google Scholar
  92. Swider, W. andKeneshea, T. J. (1973),Decerase of ozone and atomic oxygen in the lower mesosphere during a PCA event, Planet. Space Sci.21, 1969.Google Scholar
  93. Thomas, L. (1964),Recent developments and outstanding problems in the theory of the D-region, Radio Sci.9, 121.Google Scholar
  94. Thorne, R. M. (1974),A possible cause of dayside relativistic electron precipitation events, J. Atmos. Terr. Phys.36, 635.Google Scholar
  95. Thorne, R. M. (1976),The structure and stability of radiation belt electrons as controlled by waveparticle interactions, inMagnetospheric particles and fields, ed. B. M. McCormac, p. 157, Reidel Pub. Co., Dordrecht, Holland.Google Scholar
  96. Thorne, R. M. (1977a),Influence of relativistic electron precipitation on the lower ionosphere and stratosphere, inDynamical and chemical coupling between the neutral and ionized atmosphere, ed. B. Grandal and J. A. Holtet, p. 161, D. Reidel Pub. Co.Google Scholar
  97. Thorne, R. M. (1977b),Energetic radiation belt electron precipitation: A natural depletion mechanism for stratospheric ozone, Science21, 287.Google Scholar
  98. Thorne, R. M. (1978),The potential role of relativistic electron precipitation as a natural destruction mechanism for middle atmospheric ozone, in Proc. of Joint IAGA/IAMAP Assembly in Seattle, pub. by NCAR.Google Scholar
  99. Thorne, R. M. andKennel, C. F. (1971),Relativistic electron precipitation during magnetic storm main phase, J. Geophys. Res.76, 4446.Google Scholar
  100. Thorne, R. M. andLarsen, T. R. (1976),An investigation of relativistic electron precipitation events and their association with magnetospheric substorm activity, J. Geophys. Res.81, 5501.Google Scholar
  101. Thrush, B. A. (1979),Aspects of the chemistry of ozone depletion, Phil. Trans. Roy. Soc. London A,290, 505.Google Scholar
  102. Vampola, A. L. (1971),Electron pitch-angle scattering in the outer zone during magnetically disturbed times, J. Geophys. Res.76, 4685.Google Scholar
  103. Walt, M. andMacDonald, W. M. (1964),The influence of the Earth's atmosphere on geomagnetically trapped particles, Rev. Geophys.2, 543.Google Scholar
  104. Walt, M., MacDonald, W. M. andFrancis, W. E. (1968),Penetration of auroral electrons into the atmosphere, inPhysics of the magnetosphere, ed. B. M. McCormac, p. 534, Reidel Pub. Co., Dordrecht, Holland.Google Scholar
  105. Warneck, P. (1972),Cosmic radiation as a source of odd nitrogen in the stratosphere, J. Geophys. Res.77, 6589.Google Scholar
  106. Webber, W. (1962),The production of free electrons in the ionospheric D layer by solar and galactic cosmic rays and the resultant absorption of radio waves, J. Geophys. Res.67, 5091.Google Scholar
  107. Weeks, L. H., Cuikay, R. S. andCorbin, J. R. (1972),Ozone measurements in the mesophere during the solar proton event of 2 November 1969, J. Atmos. Sci.29, 1138.Google Scholar
  108. Wentworth, R. C., MacDonald, W. M. andSinger, S. F. (1959),Lifetimes of trapped radiation belt particles determined by coulomb scattering, Phys. Fluids2, 499.Google Scholar
  109. West, H. I. Jr., Buck, R. M. andWalton, J. R. (1973),Electron pitch angle distribution throughout the magnetosphere as observed on Ogo 5, J. Geophys. Res.78, 1064.Google Scholar
  110. Winters, H. F. (1966),Ionic absorption and dissociation cross sections for nitrogen, J. Chem. Phys.44, 1472.Google Scholar
  111. Wofsy, S. C. (1974), Atmospheric photochemistry of N, H and Clcontaining radicals, C.I.A.P. Rep. DOT-TSC-OST-74-15, p. 359.Google Scholar
  112. Wofsy, S. C. andMcElroy, M. B. (1974), HOx, NOx and ClOx:Their role in atmospheric photochemistry, Can. J. Phys.52, 1582.Google Scholar
  113. Zerefos, C. S. andCrutzen, P. J. (1975),Stratospheric thickness variations over the Northern Hemisphere and their possible relation to solar activity, J. Geophys. Res.80, 5041.Google Scholar
  114. Zmuda, A. J. andPotemra, T. A. (1972),Bombardment of the polar cap ionosphere by solar cosmic rays, Rev. Geophys. Space Phys.10, 981.Google Scholar

Copyright information

© Birkhäuser Verlag 1980

Authors and Affiliations

  • Richard Mansergh Thorne
    • 1
  1. 1.Department of Atmospheric SciencesUniversity of CaliforniaLos AngelesUSA

Personalised recommendations