Mathematical Programming

, Volume 53, Issue 1–3, pp 63–78 | Cite as

Applications of parametric programming and eigenvalue maximization to the quadratic assignment problem

  • Franz Rendl
  • Henry Wolkowicz
Article

Abstract

We investigate new bounding strategies based on different relaxations of the quadratic assignment problem. In particular, we improve the lower bound found by using an eigenvalue decomposition of the quadratic part and by solving a linear program for the linear part. The improvement is accomplished by applying a steepest ascent algorithm to the sum of the two bounds.

Key words

Quadratic assignment problem relaxation lower bounds eigenvalue decomposition steepest ascent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.E. Burkard and U. Derigs, “Assignment and matching problems: solution methods for Fortran-programs,” in:Lecture Notes in Economics and Mathematical Systems No. 184 (Springer, Berlin, 1980).Google Scholar
  2. [2]
    F.H. Clarke,Optimization and Nonsmooth Analysis (Wiley, New York, 1983).Google Scholar
  3. [3]
    M.E. Dyer, A.M. Frieze and C.J.H. McDiarmid, “On linear programs with random costs,”Mathematical Programming 35 (1986) 3–16.Google Scholar
  4. [4]
    G. Finke, R.E. Burkard and F. Rendl, “Quadratic assignment problems,”Annals of Discrete Mathematics 31 (1987) 61–82.Google Scholar
  5. [5]
    G. Finke and E. Medova-Dempster, “Approximation approach to combinatorial optimization problems,” Research Report, Technical University of Nova Scotia (Halifax, 1987).Google Scholar
  6. [6]
    P.E. Gill, W. Murray and M.H. Wright,Practical Optimization (Academic Press, San Diego, 1981).Google Scholar
  7. [7]
    B. Gollan, “Eigenvalue perturbations and non-linear parametric optimization,”Mathematical Programming Study 30 (1987) 67–81.Google Scholar
  8. [8]
    S. Hadley and H. Wolkowicz, “The Hessian of a function of the eigenvalues,” Research Report, The University of Waterloo (Waterloo, Ontario, 1988).Google Scholar
  9. [9]
    M. Held, P. Wolfe and P. Crowder, “Validation of subgradient optimization,”Mathematical Programming 6 (1974) 62–88.Google Scholar
  10. [10]
    A.J. Hoffman and H.W. Wielandt, “The variation of the spectrum of a normal matrix,”Duke Mathematical Journal 20 (1953) 37–39.Google Scholar
  11. [11]
    R. Horn and C. Johnson,Matrix Analysis (Cambridge University Press, Cambridge, 1985).Google Scholar
  12. [12]
    L. Mirsky, “The spread of a matrix,”Mathematika 3 (1956) 127–130.Google Scholar
  13. [13]
    K.G. MurtyLinear Programming (Wiley, New York, 1983).Google Scholar
  14. [14]
    C.E. Nugent, T.E. Vollman and J. Ruml, “An experimental comparison of techniques for the assignment of facilities to locations,”Operations Research 16 (1968) 150–173.Google Scholar
  15. [15]
    M.L. Overton, “On minimizing the maximum eigenvalue of a symmetric matrix,”SIAM Journal of Matrix Analysis and Applications 9 (1988) 256–268.Google Scholar
  16. [16]
    R.T. Rockafellar,Convex Analysis (Princeton University Press, Princeton, NJ, 1970).Google Scholar
  17. [17]
    C. Roucairol, “A parallel branch and bound algorithm for the quadratic assignment problem,”Discrete Applied Mathematics 18 (1987) 211–225.Google Scholar
  18. [18]
    S. Sahni and T. Gonzales, “P-complete approximation problems,”Journal of the Association for Computing Machinery 23 (1976) 555–565.Google Scholar
  19. [19]
    H. Schramm and J. Zowe, “A combination of the bundle approach and the trust region concept,” in: J. Guddat et al., eds.,Advances in Mathematical Optimization (Akademie Verlag, Berlin, 1988).Google Scholar
  20. [20]
    H. Wolkowicz and G.P.H. Styan, “Bounds for eigenvalues using traces,”Linear Algebra and its Applications 29 (1980) 471–506.Google Scholar
  21. [21]
    J. Zowe, “The BT-algorithm for minimizing a nonsmooth functional subject to linear constraints,” Working paper 1088, University of Bergen (Bergen, 1988).Google Scholar

Copyright information

© The Mathematical Programming Society, Inc. 1992

Authors and Affiliations

  • Franz Rendl
    • 1
  • Henry Wolkowicz
    • 2
  1. 1.Institut für MathematikTechnische Universität GrazGrazAustria
  2. 2.Department of Combinatorics and OptimizationUniversity of WaterlooWaterlooCanada

Personalised recommendations