Mathematical Programming

, Volume 62, Issue 1–3, pp 261–275

Convergence of some algorithms for convex minimization

  • Rafael Correa
  • Claude Lemaréchal


We present a simple and unified technique to establish convergence of various minimization methods. These contain the (conceptual) proximal point method, as well as implementable forms such as bundle algorithms, including the classical subgradient relaxation algorithm with divergent series.

AMS Subject Classification

65K05 90C25 

Key words

Nondifferentiable optimization convex programming proximal point method bundle algorithms global convergence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Auslender, “Numerical methods for nondifferentiable convex optimization,” in: B. Cornet, N.V. Hien and J.P. Vial, eds.Nonlinear Analysis and Optimization. Mathematical Programming Study No.30 (1987) pp. 102–126.Google Scholar
  2. [2]
    R.E. Bellman, R.E. Kalaba and J. Lockett,Numerical Inversion of the Laplace Transform (Elsevier, New York, 1966) pp. 143–144.Google Scholar
  3. [3]
    E.W. Cheney and A.A. Goldstein, “Newton's method for convex programming and Tchebycheff approximation,”Numerische Mathematik 1 (1959) 253–268.Google Scholar
  4. [4]
    M. Fukushima, “A descent algorithm for nonsmooth convex programming,”Mathematical Programming 30 (1984) 163–175.Google Scholar
  5. [5]
    O. Güler, “On the convergence of the proximal point algorithm for convex minimization,”SIAM Journal on Control and Optimization 29 (1991) 403–419.Google Scholar
  6. [6]
    J.E. Kelley, “The cutting plane method for solving convex programs,”Journal of the Society for Industrial and Applied Mathematics 8 (1960) 703–712.Google Scholar
  7. [7]
    K.C. Kiwiel, “An aggregate subgradient method for nonsmooth convex minimization,”Mathematical Programming 27 (1983) 320–341.Google Scholar
  8. [8]
    K.C. Kiwiel, “A method for solving certain quadratic programming problems arising in nonsmooth optimization,”IMA Journal of Numerical Analysis 6 (1986) 137–152.Google Scholar
  9. [9]
    K.C. Kiwiel, “Proximity control in bundle methods for convex nondifferentiable minimization,”Mathematical Programming 46 (1990) 105–122.Google Scholar
  10. [10]
    B. Lemaire, “About the convergence of the proximal method,” in: D. Pallaschke, ed.,Advances in Optimization. Lecture Notes in Economics and Mathematicsl Systems No. 382 (Springer, Berlin, 1992) pp. 39–51.Google Scholar
  11. [11]
    C. Lemaréchal, “An extension of Davidon methods to non differentiable problems,” in: M.L. Balinski and P. Wolfe, eds.,Nondifferentiable Optimization. Mathematical Programming Study No.3 (1975) pp. 95–109.Google Scholar
  12. [12]
    C. Lemaréchal, “A view of line-searches,” in: A. Auslender, W. Oettli and J. Stoer, eds.,Optimization and Optimal Control. Lecture Notes in Control and Information Science No. 30 (Springer, Berlin, 1980) pp. 59–78.Google Scholar
  13. [13]
    C. Lemaréchal, J.J. Strodiot and A. Bihain, “On a bundle algorithm for nonsmooth optimization,” in: O.L. Mangasarian, R.R. Meyer and S.M. Robinson, eds.,Nonlinear Programming 4 (Academic Press, New York, 1981) pp. 245–282.Google Scholar
  14. [14]
    C. Lemaréchal, A.S. Nemirovskii and Yu.E. Nesterov, “New variants of bundle methods,” INRIA Report No. RR1508 (Le Chesnay, 1991).Google Scholar
  15. [15]
    B. Martinet, “Régularisation d'inéquations variationnelles par approximation successives,”Revue Française d'Informatique et Recherche Opérationnelle R3 (1970) 154–158.Google Scholar
  16. [16]
    R.R. Phelps,Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Mathematics No. 1364 (Springer, Berlin, 1989).Google Scholar
  17. [17]
    B.T. Poljak, “A general method of solving extremum problems,”Soviet Mathematics Doklady 8 (1967) 593–597.Google Scholar
  18. [18]
    R.T. Rockafellar, “Augmented Lagrangians and applications of the proximal point algorithm in convex programming,”Mathematics of Operations Research 1 (1976) 97–116.Google Scholar
  19. [19]
    H. Schram and J. Zowe, “A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results,”SIAM Journal on Optimization 2 (1992) 121–152.Google Scholar
  20. [20]
    P. Wolfe, “A method of conjugate subgradients for minimizing nondifferentiable functions,” in: M.L. Balinski and P. Wolfe, eds.,Nondifferentiable Optimization. Mathematical Programming Study No.3 (1975) pp. 145–173.Google Scholar

Copyright information

© The Mathematical Programming Society, Inc. 1993

Authors and Affiliations

  • Rafael Correa
    • 1
  • Claude Lemaréchal
    • 2
  1. 1.Departamento de MatematicasUniversidad de ChileSantiagoChile
  2. 2.Domaine de Voluceau-RocquencourtINRIALe Chesnay CedexFrance

Personalised recommendations