Mathematical Programming

, Volume 62, Issue 1–3, pp 133–151 | Cite as

Min-cut clustering

  • Ellis L. Johnson
  • Anuj Mehrotra
  • George L. Nemhauser
Article

Abstract

We describe a decomposition framework and a column generation scheme for solving a min-cut clustering problem. The subproblem to generate additional columns is itself an NP-hard mixed integer programming problem. We discuss strong valid inequalities for the subproblem and describe some efficient solution strategies. Computational results on compiler construction problems are reported.

Key words

Clustering decomposition column generation subproblem optimization valid inequality compiler design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Barahona and R. Majhoub, “On the cut polytope,”Mathematical Programming 36 (1986) 157–173.Google Scholar
  2. [2]
    S. Chopra, “The graph partitioning polytope on series-parallel and 4-wheel free graphs,” J.L. Kellogg Graduate School of Management, Northwestern University (Evanston, IL, 1991).Google Scholar
  3. [3]
    S. Chopra and M.R. Rao, “The partition problem,” J.L. Kellogg Graduate School of Management, Northwestern University (Evanston, IL, 1990).Google Scholar
  4. [4]
    S. Chopra and M.R. Rao, “Facets of thek-partition polytope,” J.L. Kellogg Graduate School of Management, Northwestern University (Evanston, IL, 1991).Google Scholar
  5. [5]
    M. Conforti, M.R. Rao and A. Sassano, “The equipartition polytope. I: Formulations, dimension and basic facets,”Mathematical Programming 49 (1990) 49–70.Google Scholar
  6. [6]
    M. Conforti, M.R. Rao and A. Sassano, “The equipartition polytope. II: Valid inequalities, and facets,”Mathematical Programming 49 (1990) 71–90.Google Scholar
  7. [7]
    E. Dahlaus, D.S. Johnson, C.H. Papadimitriou, P. Seymour and M. Yanakakis, “The complexity of multiway cuts,” extended abstract (1983).Google Scholar
  8. [8]
    M.R. Garey and D.S. Johnson,Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, New York, 1979).Google Scholar
  9. [9]
    O. Goldschmidt and D.S. Hochbaum, “An O(|V|2) algorithm for thek-cut problem,”Proceedings 29th Annual Symposium on Foundations of Computer Science (1985) pp. 444–451.Google Scholar
  10. [10]
    M. Grötschel and Y. Wakabayashi, “A cutting plane algorithm for a clustering problem,”Mathematical Programming (Series B) 45 (1989) 59–96.Google Scholar
  11. [11]
    M. Grötschel and Y. Wakabayashi, “Facets of the clique partitioning polytope,”Mathematical Programming 47 (1990) 367–387.Google Scholar
  12. [12]
    E.L. Johnson, “Modeling and strong linear programs for mixed integer programming,”NATO ASI Series, F51, Algorithms and Model Formulations in Mathematical Programming (Springer, Berlin, 1989).Google Scholar
  13. [13]
    A. Mehrotra, “Constrained graph partitioning: decomposition, polyhedral structure and algorithms,” PhD Dissertation, School of Industrial and Systems Engineering, Georgia Institute of Technology (Atlanta, GA, 1992).Google Scholar
  14. [14]
    G.L. Nemhauser and S. Park, “A polyhedral approach to edge coloring,”Operations Research Letters 10 (1991) 315–322.Google Scholar
  15. [15]
    G.L. Nemhauser and L.A. Wolsey,Integer and Combinatorial Optimization (Wiley, New York, 1988).Google Scholar
  16. [16]
    M. Padberg, “The Boolean quadratic polytope: Some characteristics, facets and relatives,”Mathematical Programming (Series B) 45 (1989) 139–172.Google Scholar

Copyright information

© The Mathematical Programming Society, Inc. 1993

Authors and Affiliations

  • Ellis L. Johnson
    • 1
  • Anuj Mehrotra
    • 1
  • George L. Nemhauser
    • 1
  1. 1.School of Industrial and Systems EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations