Mathematical Programming

, Volume 24, Issue 1, pp 70–91 | Cite as

Necessary and sufficient optimality conditions for a class of nonsmooth minimization problems

  • A. Ben-Tal
  • J. Zowe


The purpose of this paper is to derive, in a unified way, second order necessary and sufficient optimality criteria, for four types of nonsmooth minimization problems: thediscrete minimax problem, thediscrete l1-approximation, the minimization of theexact penalty function and the minimization of theclassical exterior penalty function. Our results correct and supplement conditions obtained by various authors in recent papers.

Key words

Necessary and Sufficient Second Order Conditions Nonsmooth Optimization Minimax Problem l1-Approximation Penalty Functions Directional Derivatives 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Auslender, “Penalty methods for computing points that satisfy second order necessary conditions”,Mathematical Programming 17 (1979) 229–238.Google Scholar
  2. [2]
    A. Ben-Tal and J. Zowe, “A unified theory of first and second order conditions for extremum problems in topological vector spaces”,Mathematical Programming Study 19 (1982) 39–76.Google Scholar
  3. [3]
    A. Ben-Tal and J. Zowe, “Discretel 1-approximation and related nonlinear nondifferentiable problems”, Preprint, Institute of Mathematics, University of Bayreuth, Bayreuth (1980).Google Scholar
  4. [4]
    C. Charalambous, “On the condition for optimality of the non-linearl 1-problem”,Mathematical Programming 19 (1980) 178–185.Google Scholar
  5. [5]
    T.F. Coleman and A.R. Conn, “Second order conditions for an exact penalty function”,Mathematical Programming 19 (1980) 178–185.Google Scholar
  6. [6]
    J.M. Danskin,The theory of max-min (Springer, Berlin, 1967).Google Scholar
  7. [7]
    V.F. Dem'yanov and V.N. Malozemov,Introduction to minimax (Wiley, New York, 1974).Google Scholar
  8. [8]
    V.F. Dem'yanov and A.B. Pevnyi, “Expansion with respect to a parameter of the extremal values of game problems”,USSR Computational Mathematics and Mathematical Physics 14 (1974) 33–45.Google Scholar
  9. [9]
    R.J. Duffin, “Infinite programs”, in: H.W. Kuhn and A.W. Tucker, eds.,Linear inequalities and related systems (Princeton University Press, Princeton, NH, 1956) pp. 157–171.Google Scholar
  10. [10]
    R. Fletcher and G.A. Watson, “First and second order conditions for a class of nondifferentiable optimization problems”,Mathematical Programming 18 (1980) 291–307.Google Scholar
  11. [11]
    S.P. Han and O.L. Mangasarian, “Exact penalty functions in nonlinear programming”,Mathematical Programming 17 (1979) 251–269.Google Scholar
  12. [12]
    W. Krabs,Optimization and approximation (Wiley, New York, 1979).Google Scholar
  13. [13]
    H. Maurer and J. Zowe, “First and second order necessary and sufficient optimality conditions for infinite-dimensional programming problems”,Mathematical Programming 16 (1979) 98–110.Google Scholar
  14. [14]
    T. Pietrzykowski, “An exact penalty method for constrained maxima”,SIAM Journal on Numerical Analysis 6 (1969) 299–304.Google Scholar

Copyright information

© The Mathematical Programming Society, Inc. 1982

Authors and Affiliations

  • A. Ben-Tal
    • 1
  • J. Zowe
    • 2
  1. 1.Faculty of Industrial Engineering and ManagementTechnion-Israel Institute of TechnologyHaifaIsrael
  2. 2.Department of MathematicsUniversity of BayreuthBayreuthGermany

Personalised recommendations