Advertisement

Mathematical Programming

, Volume 24, Issue 1, pp 1–38 | Cite as

Additively decomposed quasiconvex functions

  • Gerard Debreu
  • Tjalling C. Koopmans
Article

Abstract

Letf be a real-valued function defined on the product ofm finite-dimensional open convex setsX1, ⋯,X m .

Assume thatf is quasiconvex and is the sum of nonconstant functionsf1, ⋯,f m defined on the respective factor sets. Then everyf i is continuous; with at most one exception every functionf i is convex; if the exception arises, all the other functions have a strict convexity property and the nonconvex function has several of the differentiability properties of a convex function.

We define the convexity index of a functionf i appearing as a term in an additive decomposition of a quasiconvex function, and we study the properties of that index. In particular, in the case of two one-dimensional factor sets, we characterize the quasiconvexity of an additively decomposed functionf either in terms of the nonnegativity of the sum of the convexity indices off1 andf2, or, equivalently, in terms of the separation of the graphs off1 andf2 by means of a logarithmic function. We investigate the extension of these results to the case ofm factor sets of arbitrary finite dimensions. The introduction discusses applications to economic theory.

Key words

Quasiconvex Functions Additive Decomposability Convexity Index Logarithmic Separation Utility Theory Production Theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Aoki, “An investment planning process for an economy with increasing returns”,Review of Economic Studies 38 (1971) 273–280.Google Scholar
  2. K.J. Arrow, “Le rôle des valeurs boursières pour la répartition la meilleure des risques”,Econométrie, Paris, Centre National de la Recherche Scientifique (1953) 41–48. Translated as “The role of securities in the optimal allocation of risk-bearing”,Review of Economic Studies 31 (1964) 91–96.Google Scholar
  3. K.J. Arrow and A.C. Enthoven, “Quasi-concave programming”,Econometrica 29 (1961) 779–800.Google Scholar
  4. M. Avriel, “r-convex functions”,Mathematical Programming 2 (1972) 309–323.Google Scholar
  5. C. Blackorby, R. Davidson and D. Donaldson, “A homiletic exposition of the expected utility hypothesis”,Economica 44 (1977) 351–358.Google Scholar
  6. J.C. Cox, “A theorem on additively-separable quasi-concave functions”,Journal of Economic Theory 6 (1973) 210–212.Google Scholar
  7. J.P. Crouzeix, “Conjugacy in quasi-convex analysis”, in: A. Auslander, ed.,Convex analysis and its applications (Springer-Verlag, Berlin, 1977) pp. 66–99.Google Scholar
  8. J.P. Crouzeix, “Continuity and differentiability properties of quasiconvex functions onR n”, in: S. Schaible and W.T. Ziemba, eds.,Generalized concavity in optimization and economics (Academic Press, New York, 1981).Google Scholar
  9. G. Debreu, “Topological methods in cardinal utility theory”, in: K.J. Arrow, S. Karlin and P. Suppes, eds.,Mathematical methods in the social sciences, 1959 (Stanford University Press, Stanford, CA, 1960) pp. 16–26.Google Scholar
  10. E. Dierker, C. Fourgeaud and W. Neuefeind, “Increasing returns to scale and productive systems”,Journal of Economic Theory 13 (1976) 428–438.Google Scholar
  11. H.G. Eggleston,Convexity (Cambridge University Press, London, 1969).Google Scholar
  12. W. Fenchel, “Convex cones, sets, and functions”, Lecture notes, Department of Mathematics, Princeton University (Princeton, NJ, 1953).Google Scholar
  13. J.A. Ferland, “Quasiconvex and pseudoconvex functions on solid convex sets”, Dissertation, Stanford University (Stanford, CA, 1971).Google Scholar
  14. C. Fourgeaud, B. Lenclud and P. Sentis, “Equilibre, optimum et décentralisation dans un cas de rendement croissant”,Cahiers du Séminaire d'Econométrie, Centre National de la Recherche Scientifique, Paris, 15 (1974) 29–46.Google Scholar
  15. W.M. Gorman, “The concavity of additive utility functions”, Research Memorandum, The University of North Carolina (1970).Google Scholar
  16. J. Green, “Direct additivity and consumers' behaviour”,Oxford Economic Papers 13 (1961) 132–136.Google Scholar
  17. H.J. Greenberg and W.P. Pierskalla, “A review of quasi-convex functions”,Operations Research 19 (1971) 1553–1570.Google Scholar
  18. B. Grodal, “Some further results on integral representation of utility functions”, unpublished manuscript, Institute of Economics, University of Copenhagen (Copenhagen, 1978).Google Scholar
  19. R. Guesnerie, “Pareto optimality in non-convex economies”,Econometrica 43 (1975) 1–29.Google Scholar
  20. J. Hirshleifer, “Investment decision under uncertainty: Choice-theoretic approaches”,Quarterly Journal of Economics 79 (1965) 509–536.Google Scholar
  21. J.L. Kelley,General topology (Van Nostrand Reinhold, New York, 1955).Google Scholar
  22. T.C. Koopmans, “Iff(x) + g(y) is quasi-convex, at least one off(x), g(y) is convex”, Mimeographed, Yale University (New Haven, CT, 1971).Google Scholar
  23. J.J. Laffont, “Une note sur la compatibilité entre rendements croissants et concurrence parfaite”,Revue d'Economie Politique 82 (1972) 1188–1193.Google Scholar
  24. P.O. Lindberg, “On classes of quasiconvex functions onR, closed under addition and translation”, unpublished manuscript, Department of Mathematics, Royal Institute of Technology (Stockholm, 1980a).Google Scholar
  25. P.O. Lindberg, “Onr-convex functions”, unpublished manuscript, Department of Mathematics, Royal Institute of Technology (Stockholm, 1980b).Google Scholar
  26. P.O. Lindberg, “On separable quasiconcave functions”, unpublished manuscript, Department of Mathematics, Royal Institute of Technology (Stockholm, 1980c).Google Scholar
  27. P.O. Lindberg, “A class of convexifiable functions”, in: S. Schaible and W.T. Ziemba, eds.,Generalized concavity in optimization and economics (Academic Press, New York, 1981).Google Scholar
  28. T. Rader,Theory of microeconomics (Academic Press, New York, 1972).Google Scholar
  29. F. Riesz and B. Sz.-Nagy,Functional analysis (Ungar, New York, 1955).Google Scholar
  30. A.W. Roberts and D.E. Varberg,Convex functions (Academic Press, New York, 1973).Google Scholar
  31. R.W. Shephard,Cost and production functions (Princeton University Press, Princeton, NJ, 1953).Google Scholar
  32. E.E. Slutsky, “Sulla teoria del bilancio del consumatore”,Giornale degli economisti 51 (1915) 1–26. Translated as “On the theory of the budget of the consumer”, in:Readings in price theory, American Economic Association (Richard Irwin, 1952) pp. 27–56.Google Scholar
  33. J. Stoer and C. Witzgall,Convexity and optimization in finite dimensions I (Springer-Verlag, Berlin, 1970).Google Scholar
  34. L. Thorlund-Petersen, “Concave, additive utility representations and fair division of a random income”, unpublished manuscript, Institute of Economics, University of Copenhagen (Copenhagen, 1980).Google Scholar
  35. M.E. Yaari, “A note on separability and quasi-concavity”,Econometrica 45 (1977) 1183–1186.Google Scholar
  36. M.E. Yaari, “Separably concave utilities or the principle of diminishing eagerness to trade”,Journal of Economic Theory 18 (1978) 102–118.Google Scholar

Copyright information

© The Mathematical Programming Society, Inc. 1982

Authors and Affiliations

  • Gerard Debreu
    • 1
  • Tjalling C. Koopmans
    • 2
  1. 1.Departments of Economics and of MathematicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Cowles Foundation for Research in EconomicsYale UniversityNew HavenUSA

Personalised recommendations