Mathematical Programming

, Volume 33, Issue 3, pp 300–317 | Cite as

Inclusion functions and global optimization

  • H. Ratschek


Inclusion functions combined with special subdivision strategies are an effective means of solving the global unconstrained optimization problem. Although these techniques were determined and numerically tested about ten years ago, they are nearly unknown and scarcely used. In order to make the role of inclusion functions and subdivision strategies more widespread and transparent we will discuss a related simplified basic algorithm. It computes approximations of the global minimum and, at the same time, bounds the absolute approximation error. We will show that the algorithm works and converges under more general assumptions than it has been known hitherto, that is, only appropriate inclusion functions are expected to exist. The number of minimal points (finite or infinite) is not of importance. Lipschitz conditions or continuity are not assumed. As shown in the Appendix the required inclusion functions can be constructed and programmed without difficulty in a natural way using interval analysis.

Key word

Global Unconstrained Optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N.S. Asaithambi, S. Zuhe and R.E. Moore, “On computing the range of values”,Computing 28 (1982) 225–237.Google Scholar
  2. [2]
    N. Apostolatos, U. Kulisch, R. Krawczyk, B. Lortz, K. Nickel and H.-W. Wippermann, “The algorithmic languageTriplex algol 60”,Numerische Mathematik 11 (1968) 175–180.Google Scholar
  3. [3]
    P. Basso, “Iterative methods for the localisation of the global maximum”,SIAM Journal on Numerical Analysis 19 (1982) 781–792.Google Scholar
  4. [4]
    R.P. Brent,Algorithms for minimization without derivatives (Prentice-Hall, Englewood Cliffs, 1973).Google Scholar
  5. [5]
    O. Caprani and K. Madsen, “Mean value forms in interval analysis”,Computing 25 (1980) 147–154.Google Scholar
  6. [6]
    G.T. Cargo and O. Shisha, “The Bernstein form of a polynomial”,Journal of Research of the National Bureau of Standards, Section B 70B (1966) 79–81.Google Scholar
  7. [7]
    H. Cornelius and R. Lohner, “Computing the range of values of real functions with accuracy higher than second order”,Computing 33 (1984) 331–347.Google Scholar
  8. [8]
    L.C.W. Dixon and G.P. Szegö, eds.,Towards global optimization 2 (North-Holland, Amsterdam, 1977).Google Scholar
  9. [9]
    R. Dussel, “Einschließung des Minimalpunktes einer streng konvexen Funktion auf einemn-dimensionalen Quader”, Dissertation, Universität Karlsruhe (Karlsruhe, 1972).Google Scholar
  10. [10]
    R. Dussel, “Einschließung des Minimalpunktes einer streng konvexen Funktion auf einemn-dimensionalen Quader”, in: K. Nickel, ed.,Interval mathematics (Springer-Verlag, Berlin, 1975) pp. 169–177.Google Scholar
  11. [11]
    E. Hansen, “The centered form”, in: E. Hansen, ed.,Topics in interval analysis (Oxford University Press, Oxford, 1969) pp. 102–105.Google Scholar
  12. [12]
    E. Hansen, “Global optimisation using interval analysis: The one-dimensional case”,Journal of Optimisation Theory and Applications 29 (1979) 331–334.Google Scholar
  13. [13]
    E. Hansen, “Global optimisation using interval analysis—The multi-dimensional case”,Numerische Mathematik 34 (1980) 247–270.Google Scholar
  14. [14]
    J.F. Hart, et al.,Computer approximations (Wiley, New York, 1968).Google Scholar
  15. [15]
    R. Krawczyk, “Zentrische Formen und Intervalloperatoren”, Freiburger Intervallberichte 82/1, Institut für Angewandte Mathematik, Universität Freiburg (Freiburg, 1982).Google Scholar
  16. [16]
    R. Krawczyk, “Intervallsteigungen für rationale Funktionen und zugeordnete zentrische Formen”, Freiburger Intervallberichte 83/2, Institut für Angewandte Mathematik, Universität Freiburg (Freiburg, 1983).Google Scholar
  17. [17]
    R. Krawczyk and K. Nickel, “Die zentrische Form in der Intervallarithmetik, ihre quadratische Konvergenz und ihre Inklusionsmonotonie”,Computing 28 (1982) 117–132.Google Scholar
  18. [18]
    U. Kulisch and C. Ullrich, eds.,Wissenschaftliches Rechnen und Programmiersprachen (Teubner, Stuttgart, 1982).Google Scholar
  19. [19]
    W. Miller and W. Chuba, “Quadratic convergence in interval arithmetic, Part I”,Nordisk Tidskrift for Informationsbehandling (BIT) 12 (1972) 284–290.Google Scholar
  20. [20]
    W. Miller, “Quadratic convergence in interval arithmetic, Part II”,Nordisk Tidskrift for Informations-behandling (BIT) 12 (1972) 291–298.Google Scholar
  21. [21]
    R.E. Moore,Interval analysis (Prentice-Hall, Englewood Cliffs, 1966).Google Scholar
  22. [22]
    R.E. Moore, “On computing the range of a rational function ofn variables over a bounded region”,Computing 16 (1976) 1–15.Google Scholar
  23. [23]
    R.E. Moore, Methods and applications of interval analysis (SIAM, Philadelphia, 1979).Google Scholar
  24. [24]
    K. Nickel, “Die Überschätzung des Wertebereichs einer Funktion in der Intervallrechnung mit Anwendungen auf lineare Gleichungssysteme”,Computing 18 (1977) 15–36.Google Scholar
  25. [25]
    K. Nickel and K. Ritter, “Termination criterion and numerical convergence”,SIAM Journal on Numerical Analysis 9 (1972) 277–283.Google Scholar
  26. [26]
    L.B. Rall,Automatic differentiation: Techniques and applications (Springer-Verlag, Berlin, 1981).Google Scholar
  27. [27]
    L.B. Rall, “Mean value and Taylor forms in interval analysis”,SIAM Journal on Mathematical Analysis 14 (1983) 223–238.Google Scholar
  28. [28]
    H. Ratschek, “Zentrische Formen”,Zeitschrift für angewandte Mathematik und Mechanik 58 (1978) T434-T436.Google Scholar
  29. [29]
    H. Ratschek, “Centered forms”,SIAM Journal on Numerical Analysis 17 (1980) 656–662.Google Scholar
  30. [30]
    H. Ratschek and J. Rokne,Computer methods for the range of functions (Horwood, Chichester, 1984).Google Scholar
  31. [31]
    H. Ratschek and G. Schröder, “Centered forms for functions in several variables”,Journal of Mathematical Analysis and Applications 82 (1981) 543–552.Google Scholar
  32. [32]
    T.J. Rivlin, “Bounds on a polynomial”,Journal of Research of the National Bureau of Standards, Section B 74B (1970) 47–54.Google Scholar
  33. [33]
    R.O. Shubert, “A sequential method seeking the global maximum of a function”,SIAM Journal on Numerical Analysis 9 (1972) 379–388.Google Scholar
  34. [34]
    S. Skelboe, “Computation of rational interval functions”,Nordisk Tidskrift for Informationsbehandling (BIT) 14 (1974) 87–95.Google Scholar

Copyright information

© The Mathematical Programming Society, Inc. 1985

Authors and Affiliations

  • H. Ratschek
    • 1
  1. 1.Mathematisches Institut der UniversitätDüsseldorfFR Germany

Personalised recommendations