Journal of Industrial Microbiology

, Volume 12, Issue 3–5, pp 221–231

Mathematical models of bacterial growth, inhibition and death under combined stress conditions

  • Kenneth M. Pruitt
  • David N. Kamau
Article

Summary

In this report we review the history of growth theories. We show how classical growth models may be derived as special cases of a generic growth rate equation. We show how growth models may be modified to represent survival data. We use linear combinations of growth and survival models to represent complex growth/survival curves and give practical examples utilizing nonlinear regression analysis. We show that traditional methods of estimating D values are inappropriate for complex, multiphasic growth/survival data. We show how such data may be modeled mathematically and illustrate methods for estimating true D values from such data.

Key words

Growth models Survival models Bacterial growth Bacterial inhibition Bacterial survival D values Combined stress Listeria monocytogenes Staphylococcus aureus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kamau, D.N., S. Doores and K.M. Pruitt. 1990a. Enhanced thermal destruction ofListeria monocytogenes andStaphylococcus aureus by the lactoperoxidase system. Appl. Environ. Microbiol. 56: 2711–2716.Google Scholar
  2. 2.
    Kamau, D.N., S. Doores and K.M. Pruitt. 1990b. Antibacterial activity of the lactoperoxidase system againstListeria monocytogenes andStaphylococcus aureus milk. J. Food Protect. 53: 1010–1014.Google Scholar
  3. 3.
    Kamau, D.N., S. Doores and K.M. Pruitt. 1991. Activation of the lactoperoxidase system prior to pasteurization for shelf-life extension of milk. Milswissenschaft 46: 213–214.Google Scholar
  4. 4.
    Malthus T.R. 1798. An Essay on the Principle of Population, (1st edn). J. Johnson, London.Google Scholar
  5. 5.
    Pruitt, K.M. and D.N. Kamau. 1991. The lactoperoxidase systems of bovine and human milk. In: Oxidative Enzymes in Foods (Robinson, D.S. and N.A.M. Eskin, eds), pp. 257–265, Academic Press, New York.Google Scholar
  6. 6.
    Pruitt, K.M. and M.E. Turner, Jr. 1978. A kinetic theory for analysis of complex systems. In: Biomolecular Structure and Function (Agris, P.F., ed.), pp. 257–265, Academic Press, New York.Google Scholar
  7. 7.
    Pruitt, K.M., R.E. DeMuth and M.E. Turner, Jr. 1979. Practical applications of generic growth theory and the significance of the growth curve parameters. Growth 43: 19–35.Google Scholar
  8. 8.
    Ralston, M. 1990. Derivative-free nonlinear regression. In: BMDP Statistical Software Manual, Vol. 1, (Dixon, W.J., ed.), pp. 395–424, University of California Press.Google Scholar
  9. 9.
    Turner, M.E., Jr and K.M. Pruitt. 1978. A common basis for survival, growth, and autocatalysis. Math. Biosci. 39: 113–123.Google Scholar
  10. 10.
    Turner, M.E., Jr, E.L. Bradley, Jr, K.A. Kirk and K.M. Pruitt. 1976. A theory of growth. Math. Biosci. 29: 367–373.Google Scholar
  11. 11.
    Verhulst, P.F. 1838. Notice sur la loi que la population suit dans son accroissement. Corr. Math. Phys. 10: 113.Google Scholar

Copyright information

© Society for Industrial Microbiology 1993

Authors and Affiliations

  • Kenneth M. Pruitt
    • 1
  • David N. Kamau
    • 2
  1. 1.UAB StationUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Tuskegee UniversityTuskegeeUSA

Personalised recommendations