Advertisement

Journal of Industrial Microbiology

, Volume 13, Issue 2, pp 106–111 | Cite as

Plasmid instability in an industrial strain ofBacillus subtilis grown in chemostat culture

  • Gerard T. Fleming
  • John W. Patching
Article

Summary

A pUB110-derived plasmid/Bacillus subtilis host combination was segregationally unstable when grown in chemostat culture with complex or minimal medium and under starch, glucose or magnesium limitation. The kinetics of plasmid loss were described in terms of the difference in growth rates between plasmid-containing and plasmid-free cells (dμ) and the rate at which plasmid-free cells were generated from plasmid-containing cells (R). Loss of plasmid-containing cells from the population was dμ dominated. Changes in medium composition and the nature of growth limitation caused variations in both dμ and R. The plasmid was most stable in glucose-limited chemostat cultures with minimal medium and least stable under starch limitation with complex complex medium. R and dμ were smaller for cultures in complex media than those in minimal media. Limitation by starch induced expression of the plasmid-encoded HT α amylase gene and was associated with increased values of R and dμ. Magnesium limitation in minimal medium caused a significant increase in dμ and a decrease in R.

Key words

Plasmid instability Chemostat culture Bacillus subtilis 

Abbreviations

Cm

chloramphenicol

Kan

kanamycin

Cmr

cells resistant to chloramphenicol (5 mg L−1)

Kanr

cells resistant to kanamycin (5 mg L−1)

CmsKans

cells sensitive to chloramphenicol and kanamycin

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anagnostopolous, C. and J. Spizizen. 1961. Requirements for transformation inBacillus subtilis. J. Bact. 81: 741–746.Google Scholar
  2. 2.
    Bentley, W.E. and D.S. Kompala. 1989. A novel structured kinetic modelling approach for the analysis of plasmid instability in recombinant bacterial cultures. Biotechnol. Bioeng. 33: 49–61.Google Scholar
  3. 3.
    Bentley, W.E. and D.S. Kompla. 1990. Stability in continous cultures of recombinant bacteria. Biotech. Lett. 12: 329–334.Google Scholar
  4. 4.
    Betenbaugh, M.J., C. Beaty and P. Dhurjati. 1987. Growth kinetics ofEscherichia coli containing temperature-sensitive plasmid pOU140. Biotechnol. Bieng. 3: 1425–1436.Google Scholar
  5. 5.
    Bron, S. and E. Luxen. 1985. Segegational instability of pUB110-derived recombinant plasmids inBacillus subtilis. Plasmid. 14: 235–244.Google Scholar
  6. 6.
    Bron, S., P. Bosma, M. van Belkum and E. Luxen. 1987. Stability function in theBacillus subtilis plasmid pTA1060. Plasmid. 18: 8–15.Google Scholar
  7. 7.
    Caulcott, C.A., G. Liley, E.M. Wright, M.K. Robinson and G.T. Yarranton. 1985. Investigation of the instability of plasmids during the expression of Met-prochymosin inEscherichia coli. J. Gen. Microbiol. 131: 3355–3365.Google Scholar
  8. 8.
    Cooper, N.S., M.E. Brown and C.A. Caulcott. 1987. A mathematical method for analyzing plasmid stability in microorganisms. J. Gen. Microbiol. 133: 1871–1880.Google Scholar
  9. 9.
    Doi, R.H. 1984. Genetic engineering inBacillus subtilis. In: Biotechnology and Genetic Engineering Reviews (Russell, G.E., ed.), pp. 121–135. Intercept, UK.Google Scholar
  10. 10.
    Ensley, B.D. 1986. Stability of recombinant plasmids in industrial microorganisms. CRC Crit. Rev. in Biotechnol. 4: 263–277.Google Scholar
  11. 11.
    Fleming, G., M.T. Dawson and J.W. Patching. 1988. The isolation of strains ofBacillus subtilis showing improved plasmid stability characteristics by means of selective cheostat culture. J. Gen. Microbiol. 134: 2059–2101.Google Scholar
  12. 12.
    Godwin, D. and J.H. Slater. 1979. The influence of the growth environment on the stability of a drug resistance plasmid inEscherichia coli K12. J. Gen. Microbiol. 111: 201–210.Google Scholar
  13. 13.
    Goldberg, I. and Z. Er-El. 1981. The chemostat — an efficient technique for medium optimization. Proc. Biochem. 16: 2–8.Google Scholar
  14. 14.
    Gruss, A.D. and S.D. Ehrlich. 1989. The family of highly interrelated single-stranded deoxyribonucleic acid plasmids. Microbiol. Rev. 53: 231–241.Google Scholar
  15. 15.
    Gryczan, T., A.G. Shivakumar and D. Dubnau. 1980. Characterization of chimeric plasmid cloning vehicles inBacillus subtilis. J. Bacteriol. 141: 245–253.Google Scholar
  16. 16.
    Imanaka, T. and S. Aiba. 1981. A perspective on the application of genetic engineering: stability of recombinant plasmids. Proc. N.Y. Acad. Science 10: 1–14.Google Scholar
  17. 17.
    Kadam, K.L., K.L. Wollbirer, J.C. Grosch and Y.C. Jao. 1987. Investigation of plasmid instability in an amylase-producingBacillus subtilis using continous culture. Biotechnol. Bioeng. 24: 859–872.Google Scholar
  18. 18.
    Koizumi, J., Y. Monden and S. Aiba. 1985. Effects of temperature and dilution rate on the copy number of a recombinant plasmid in continuous culture ofBacillus stearothermophilus (pLP11). Biotechnol. Bioeng. 27: 721–728.Google Scholar
  19. 19.
    Lee, S.B., A. Seressiotis and J.E. Bailey. 1985. A kinetic model for product formation in unstable recombinant organisms. Biotechnol. Bioeng. 27: 1699–1709.Google Scholar
  20. 20.
    Matsui, T., H. Sato, S. Mukataka and J. Tanaka. 1990. Effects of nutritional conditions on plasmid stability and production of tryptophan by a recombinantEscherichia coli. Agric. Biol. Chem. 54(b): 619–624.Google Scholar
  21. 21.
    Meacock, P.A. and S.N. Cohen. 1980. Partitioning of bacterial plasmids during cell division: acis-acting locus that accomplishes stable plasmid inheritance. Cell 20: 529–542.Google Scholar
  22. 22.
    Monod, J. 1950. La technique de cultière continué: theorie et applications. Ann. Inst. Pasteur Paris 79: 380–410.Google Scholar
  23. 23.
    Novick, R.P., A.D. Gruss, S.K. Highlander, M.L. Gennaro, S.J. Projan and H.F. Ross. 1986. Host-plasmid interactions affecting plasmid replication and maintenance in Gram-positive bacteria. In: Genes, Ecology, Transfer and Expression. Twentyfourth Branbury report (Levey, S.B. and R.P. Novick, eds), pp. 225–245, Cold Spring Harbor Laboratory Publications, USA.Google Scholar
  24. 24.
    Nugent, M.E., S.B. Primrose and W.C.A. Tacon. 1983. The stability of recombinant DNA. In: Developments in Industrial Microbiology 24 (Nash, C.H. and A. Lelens, eds), pp. 271–285, Soc. for Gen. Microbiol., J.D. Lucas Ltd, USA.Google Scholar
  25. 25.
    Ortlepp, S.A., J.F. Ollington and D.J. McConnell. 1983. Molecular cloning inBacillus subtilis of aBacillus licheniformis gene coding thermostable alpha amylase. Gene 23: 267–276.Google Scholar
  26. 26.
    Park, R. and D.D.Y. Ryu. 1990. Effect of operating parameters on the specific production rate of a cloned gene product and performance of the recombinant fermentation process. Biotechnol. Bioeng. 35: 287–295.Google Scholar
  27. 27.
    Reinikainen, P. and I. Virkajarvi. 1989.Escherichia coli growth and plasmid copy numbers in continous cultivations. Biotechnol. Lett. 11: 225–230.Google Scholar
  28. 28.
    Seo, J. and J.E. Bailey. 1985. A segregated model for plasmid content and product synthesis in unstable binary fission recombinant organisms. Biotechnol. Bioeng. 27: 156–165.Google Scholar
  29. 29.
    Shoham, Y. and A.L. Demain. 1990. Effect of medium composition on the maintenance of a recombinant plasmid inBacillus subtilis. Enzyme Microb. Technol. 12: 330–336.Google Scholar
  30. 30.
    Shoham, Y. and A.L. Demain. 1991. Kinetics of loss of a recombinant plasmid inBacillus subtilis. Biotechnol. Bioeng. 37: 927–935.Google Scholar
  31. 31.
    Stanstedt, R.M., E. Kneen and M.S. Blish. 1939. A standardized Wohlgemuth procedure for alpha amylase activity. Cereal Chem. 16: 712–723.Google Scholar
  32. 32.
    Vehmaanpera, J.O. and M.P. Korhola. 1986. Stability of the recombinant plasmid carrying theBacillus amyloliquefaciens α amylase gene inBacillus subtilis. Appl. Microbiol. Biotechnol. 23: 456–459.Google Scholar
  33. 33.
    Weber, A.E. and K.Y. San. 1990. Population dynamics of a recombinant culture in a chemostat under prolonged cultivation. Biotechnol. Bioeng. 6: 1104–1113.Google Scholar
  34. 34.
    Wei, D., S.J. Parulekar, B.C. Stark and W.A. Weigand. 1989. Plasmid stability and α amylase production in batch and continuous cultures ofBacillus subtilis Tn106 (pAT5). Biotechnol. Bioeng. 33: 1010–1020.Google Scholar
  35. 35.
    Wouters, J.T.M., F.L. Driehuis, P.J. Polaczek, M.L. van Oppenraay and J.G. van Andel. 1980. Persistance of the pBR322 plasmid inEscherichia coli K12 grown in chemostat cultures. Antonie von Leeuwenhoek 46: 353–362.Google Scholar

Copyright information

© Society for Industrial Microbiology 1994

Authors and Affiliations

  • Gerard T. Fleming
    • 1
  • John W. Patching
    • 1
  1. 1.Growth and Fermentation Technology Laboratory, Department of MicrobiologyUniversity College GalwayIreland

Personalised recommendations