Advertisement

Journal of Industrial Microbiology

, Volume 13, Issue 3, pp 183–189 | Cite as

Biosynthesis and phosphate control of candicidin byStreptomyces acrimycini JI2236: effect of amplification of thepabAB gene

  • Juan A. Asturias
  • Juan F. Martín
  • Paloma Liras
Article

Summary

Biosynthesis of candicidin byStreptomyces acrimycini JI2236 was strongly inhibited by phosphate.p-Aminobenzoic acid (PABA) synthase activity, required for the synthesis of PABA, a candicindin precursor, was reduced by 72% in cells grown in medium supplemented with 7.5 mM phosphate. Hybridization studies showed that the DNA region ofS. acrimycini carrying thepabAB gene (encoding PABA synthase) is very similar to the homologous region ofS. griseus 3570.S. acrimycini was easily transformed with plasmids containing thepabAB gene ofS. griseus. Four transformants were studied in detail; three of the transformants synthesized higher levels of PABA synthase and two transformants produced more candicidin than control cultures transformed with pIJ699. The fourth transformant was unable to synthesize the antibiotic. Formation of PABA synthase and candicidin production was equally sensitive to phosphate regulation in transformants with thepabAB than in the untransformedS. acrimycini strain.

Keywords

Phosphate Control Culture PABA Genetic Engineer Homologous Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asturias, J.A., P. Liras and J.F. Martín. 1990. Phosphate control ofpabS gene transcription during candicidin biosynthesis. Gene 93: 79–84Google Scholar
  2. 2.
    Criado, L.M., J.F. Martín and J.A. Gil. 1993. Genepab ofStreptomyces griseus encoding a bifunctionalp-aminobenzoic acid synthase, is located between genes that may be involved in candicidin biosynthesis. Gene 126: 135–139.Google Scholar
  3. 3.
    Deng, Z., T. Kieser and D.A. Hopwood. 1988. ‘Strong incompatibility’ between derivatives of theStreptomyces multicopy plasmid pIJ101. Mol. Gen. Genet. 254: 286–294.Google Scholar
  4. 4.
    García-Domínguez, M., P. Liras and J.F. Martín. 1991. Cloning and characterization of the isopenicillin N synthase gene ofStreptomyces griseus NRRL 3851 and studies of expression and complementation of the cephamycin pathway inStreptomyces clavuligerus. Antimicrob. Agents Chemother. 35: 44–52.Google Scholar
  5. 5.
    Gil, J.A. and D.A. Hopwood. 1983. Cloning and expression of ap-aminobenzoic acid synthase gene of the candicidin producingStreptomyces griseus. Gene 25: 119–132.Google Scholar
  6. 6.
    Gil, J.A., L.M. Criado, M.T. Alegre and J.F. Martín. 1990. Use of a cloned gene involved in candicidin production to discover new polyene producerStreptomyces strains. FEMS Microbiol. Lett. 70: 15–18.Google Scholar
  7. 7.
    Gil, J.A., G. Naharro, J.R. Villanueva and J.F. Martín. 1985. Characterization and regulation ofp-aminobenzoic acid synthase fromStreptomyces griseus. J. Gen. Microbiol. 131: 1279–1287.Google Scholar
  8. 8.
    Hopwood, D.A., M.J. Bibb, K.F. Chater, T. Kieser, C.J. Bruton, H.M. Kieser, D.J. Lydiate, C.P. Smith, J.M. Ward and H. Schrempf. 1985. Genetic Manipulation ofStreptomyces. A Laboratory Manual. The John Innes Foundation. Norwich, UK.Google Scholar
  9. 9.
    Kięser, T. and R.E. Melton. 1988. Plasmid pIJ699, a multicopy positive-selection vector forStreptomyces. Gene 65: 83–91.Google Scholar
  10. 10.
    Langridge, J., P. Langridge and P.L. Bergquist. 1980. Extraction of nucleic acids from agarose gels. Anal. Biochem. 103: 264–271.Google Scholar
  11. 11.
    Lechevalier, H., R.F. Acker, C.T. Corke, C.M. Haenseler and S.A. Waksman. 1953. Candicidin, a new antifungal antibiotic. Mycologia 45: 155–171.Google Scholar
  12. 12.
    Liras, P., J.R. Villanueva and J.F. Martín. 1977. Sequential expression of macromolecule biosynthesis and candicidin formation inStreptomyces griseus. J. Gen. Microbiol. 102: 269–277.Google Scholar
  13. 13.
    Martín, J.F. and A.L. Demain. 1976. Control by phosphate of candicidin biosynthesis. Biochem. Biophys. Res. Commun. 71: 1103–1109.Google Scholar
  14. 14.
    Martín, J.F. and L.E. McDaniel. 1975. Kinetics of biosynthesis of polyene macrolide antibiotics in batch cultures: cell maturation time. Biotechnol. Bioeng. 17: 925–938.Google Scholar
  15. 15.
    Rebollo, A., J.A. Gil, P. Liras, J.A. Asturias and J.F. Martín. 1989. Cloning and characterization of a phosphate-regulated promoter involved in phosphate control of candicidin biosynthesis. Gene 79: 47–58.Google Scholar
  16. 16.
    Sambrook, J., E.F. Fritsch and T. Maniatis. 1989. Molecular Cloning. A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  17. 17.
    Shaw, W.V. and D.A. Hopwood. 1976. Chloramphenicol acetylation inStreptomyces. J. Gen. Microbiol. 94: 159–166.Google Scholar
  18. 18.
    Zielinski, J., H. Borowy-Borowski, J. Golik, J. Gurrieriak, T. Zimisky, P. Kolodzi-Ejczyk, J. Pawlak and J. Borowski. 1979. The structure of levorin A2 and candicidin D. Tetrahedron. Lett. 20: 1791–1794.Google Scholar

Copyright information

© Society for Industrial Microbiology 1994

Authors and Affiliations

  • Juan A. Asturias
    • 1
  • Juan F. Martín
    • 1
  • Paloma Liras
    • 1
  1. 1.Area of Microbiology, Faculty of BiologyUniversity of LeónLeónSpain

Personalised recommendations