Journal of Industrial Microbiology

, Volume 11, Issue 2, pp 69–72 | Cite as

Screening of encapsulated microbial cells for the degradation of inorganic cyanides

  • Kirit D. Chapatwala
  • G. R. V. Babu
  • James H. Wolfram


Different encapsulation matrices were screened to encapsulate cells ofPseudomonas putida for degradation of inorganic cyanides. Degradation of NaCN by free cells and cells immobilized in agar, alginate or carrageenan matrices was studied. The rate of NaCN degradation was monitored for 120 h by measuring pH, bacterial growth, dissolved and gaseous NH3 and gaseous CO2. Alginate-immobilized cells degraded NaCN more efficiently than free cells or agar- or carrageenan-immobilized cells.

Key words

Biodegradation Immobilized cell Sodium cyanide Pseudomonas putida Biobead 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barbotin, J.N., F. Berry, C. Briasco, J. Huang, M. Nasri, S. Sayadi and D. Thomas. 1989. Immobilization effects on the stability of recombinant microorganisms. Chimica Oggi. 7: 49–52.Google Scholar
  2. 2.
    Dominguez, E., M. Nilsson and B. Hahn-Hagerdal. 1988. Carbodiimide coupling of β-galactosidase fromAspergillus oryzae to alginate. Enzyme Microb. Technol. 10: 606–610.Google Scholar
  3. 3.
    Dwyer, D.F., M.L. Krumme, S.A. Boyd and J.M. Tiedje. 1986. Kinetics of phenol biodegradation by an immobilized methanogenic consortium. Appl. Environ. Microbiol. 52: 345–351.Google Scholar
  4. 4.
    Fukushima, Y., K. Okamura, K. Imai and H. Motai. 1988. A new immobilization technique of whole cells and enzymes with colloidal silica and alginate. Biotechnol. Bioeng. 32: 584–594.Google Scholar
  5. 5.
    Gaudy Jr., A.F., E.T. Gaudy, Y.J. Feng and G. Brueggemann. 1982. The treatment of cyanide waste by the extended aeration process. J. Water Pollut. Control Fed. 54: 153–164.Google Scholar
  6. 6.
    Hulst, A.C., J. Tramper, K. van't Riet and J.M.M. Westerbeek. 1985. A new technique for the production of immobilized biocatalyst in large quantities. Biotechnol. Bioeng. 27: 870–876.Google Scholar
  7. 7.
    Ingvorsen, K., B.H. Pedersen and S.E. Godtfredsen. 1991. Novel cyanide hydrolyzing enzyme fromAlcaligenes xylosoxidans subsp.denitrificans. Appl. Environ. Microbiol. 57: 1783–1789.Google Scholar
  8. 8.
    Kaplan, A. 1969. The determination of urea, ammonia and urease. Methods Biochem. Anal. 17: 311–324.Google Scholar
  9. 9.
    Kierstain, M.P.J. and M.P. Coughlan. 1985. Immobilization of cells and enzymes by gel entrapment. In: Immobilized Cells and Enzymes, A Practical Approach (Woodward, J., ed.), pp. 39–48, IRL Press, Oxford.Google Scholar
  10. 10.
    Klein, J., U. Hackel and F. Wagner. 1979. Phenol degradation byCandida tropicalis whole cells entrapped in polymeric ionic networks. In: Immobilized Microbial Cells. (Venkatasubramanian, K., ed.), ACS Symposium Series No. 106. pp. 101–118, American Chemical Society, Washington, DC.Google Scholar
  11. 11.
    Knowles, C.J. 1976. Microorganisms and cyanide. Bacteriol. Rev. 40: 652–680.Google Scholar
  12. 12.
    Knowles, C.J. and A.W. Bunch. 1986. Microbial cyanide metabolism. Adv. Microb. Physiol. 27: 73–111.Google Scholar
  13. 13.
    Kunz, D.A., O. Nagappan, J.S. Avalos and G.T. Delong. 1992. Utilization of cyanide as a nitrogenous substrate byPseudomonas fluorescens NCIMB 11 764: Evidence for multiple pathways of metabolic conversion. Appl. Environ. Microbiol. 58: 2022–2029.Google Scholar
  14. 14.
    Mudder, T.I. and J.L. Whitlock. 1984. Biological treatment of cyanidation wastewaters. In: Proceedings of the 38th Annual Purdue Industrial Waste conference (Bell, J.M., ed.), Butterworth Publishers, Boston, pp. 279–287.Google Scholar
  15. 15.
    Palleroni, N.J. 1984. Gram-negative aerobic rods and cocci. In: Bergey's Manual of Systematic Bacteriology, Vol. 1. (Krieg, N.R. and Holt, J.G., eds.), pp. 140–149, The Williams and Wilkins Co., Baltimore.Google Scholar
  16. 16.
    Pras, N., P.G.M. Hesselink, J. ten Tusscher and T.M. Malingre. 1989. Kinetic aspects of the bioconversion ofl-tyrosine into L-DOPA by cells ofMucuna pruriens L. entrapped in different matrices. Biotechnol. Bioeng. 34: 214–222.Google Scholar
  17. 17.
    Richards, D.J. and W.K. Shieh. 1989. Anoxic-oxic activatedsludge treatment of cyanides and phenols. Biotechnol. Bioeng. 33: 32–38.Google Scholar
  18. 18.
    Shivaraman, N. and N.M. Parhad. 1984. Biodegradation of cyanide in a continuously fed aerobic system. J. Environ. Biol. 5: 273–284.Google Scholar
  19. 19.
    Smibert, R.M. and N.R. Krieg. 1981. General characterization. In: Manual of Methods for General Bacteriology. (Gerhardt, P., ed.), pp. 409–433, American Society for Microbiology, Washington, DC.Google Scholar
  20. 20.
    Vennesland, B., E.E. Conn, C.J. Knowles, J. Westley and F. Wissing (eds.), Cyanide in Biology, Academic Press, Inc. (London), Ltd., London.Google Scholar
  21. 21.
    Westmeier, F. and H.J. Rehm. 1985. Biodegradation of 4-chlorophenol by entrappedAlcaligenes sp. A 7-2. Appl. Microbiol. Biotechnol. 22: 301–305.Google Scholar
  22. 22.
    White, J.M., D.D. Jones, D. Huang and J.J. Gauthier. 1988. Conversion of cyanide to formate and ammonia by aPseudomonad obtained from industrial wastewater. J. Ind. Microbiol. 3: 263–272.Google Scholar

Copyright information

© Society for Industrial Microbiology 1993

Authors and Affiliations

  • Kirit D. Chapatwala
    • 1
  • G. R. V. Babu
    • 1
  • James H. Wolfram
    • 2
  1. 1.Division of Natural SciencesSelma UniversitySelmaUSA
  2. 2.BiotechnologyINEL, EG & G, Idaho Inc.Idaho FallsUSA

Personalised recommendations