Experimental investigation of an RNA sequence space

  • Youn-Hyung Lee
  • Lisa Dsouza
  • George E. Fox
Article

Abstract

Modern rRNAs are the historic consequence of an ongoing evolutionary exploration of a sequence space. These extant sequences belong to a special subset of the sequence space that is comprised only of those primary sequences that can validly perform the biological function(s) required of the particular RNA. If it were possible to readily identify all such valid sequences, stochastic predictions could be made about the relative likelihood of various evolutionary pathways available to an RNA. Herein an experimental system which can assess whether a particular sequence is likely to have validity as a eubacterial 5S rRNA is described. A total of ten naturally occurring, and hence known to be valid, sequences and two point mutants of unknown validity were used to test the usefulness of the approach. Nine of the ten valid sequences tested positive whereas both mutants tested as clearly defective. The tenth valid sequence gave results that would be interpreted as reflecting a borderline status were the answer not known. These results demonstrate that it is possible to experimentally determine which sequences in local regions of the sequence space are potentially valid 5S rRNAs. This approach will allow direct study of the constraints governing RNA evolution and allow inquiry into how the last common ancestor of extant life apparently came to have very complex ribosomal RNAs that subsequently were very conserved.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beaudry, A. A. and Joyce, G. F.: 1992,Science 257, 635.Google Scholar
  2. Bellemare, G., Vigne, R., and Jordan, B.: 1973,Biochimie 55, 29.Google Scholar
  3. Brosius, J.: 1984,Gene 27, 161.Google Scholar
  4. Burke, J. M. and Berzal-Herranz, A.: 1993,FASEB J. 7, 106.Google Scholar
  5. Chao, L. and McBroom, S. M.: 1985,Molec. Biol. Evol. 2, 359.Google Scholar
  6. Christiansen, J., Douthwaite, S. R., Christensen, A., and Garrett, R. A.: 1985, EMBO J.4, 1019.Google Scholar
  7. Dohme, F. and Nierhaus, K. H.: 1976,Proc. Natl. Acad. Sci. U.S.A. 73, 2221.Google Scholar
  8. Douthwaite, S., Christensen, A., and Garrett, R. A.: 1982,Biochemistry 21, 2313.Google Scholar
  9. Dykhuizen, D. E. and Hartl, D. L.: 1983,Microbiol. Rev. 47, 150.Google Scholar
  10. Egebjerg, J., Christiansen, J., Brown, R. S., Larsen, N., and Garrett, R. A.: 1989,J. Mol. Biol. 206, 651.Google Scholar
  11. Eigen, M. and Winkler-Oswalitsch, R.: 1988,Proc. Natl. Acad. Sci. U.S.A. 85, 5913.Google Scholar
  12. Godson, G. N. and Sinsheimer, R. L.: 1967,Biochim, Biophys. Acta 159, 489.Google Scholar
  13. Goringer, H. U. and Wagner, R.: 1986,Z. Phys. Chem. 367, 769.Google Scholar
  14. Hartl, D. L., Dykhuizen, D. E., Miller, R. D., Green, L., and de Framond, J.: 1983,Cell 35, 503.Google Scholar
  15. Hartmann, R. K., Vogel, D. W., Walker, R. T., and Erdmann, V.A.: 1988,Nucl. Acids Res. 16, 3511.Google Scholar
  16. Hedenstierna, K.O.F., Lee, Y-H., Yang, Y., and Fox, G. E.: 1993,System. Appl. Microbiol. 16, 280.Google Scholar
  17. Jayaraman, K., Shah, J., and Fyles, J.: 1989,Nucl. Acids Res. 17, 4403.Google Scholar
  18. Jordan, E. M. and Raymond, S.: 1969,Anal. Biochem. 27, 205.Google Scholar
  19. Lenski, R. E.: 1988a,Evolution 42, 425.Google Scholar
  20. Lenski, R. E.: 1988b,Evolution 42, 433.Google Scholar
  21. Lumelsky, N. and Altman, S.: 1988,J. Mol. Biol. 202, 443.Google Scholar
  22. MacDonell, M. T. and Colwell, R. R.: 1985,Syst. Appl. Microbiol. 6, 171.Google Scholar
  23. MacDonell, M. T., Swartz, D. G., Ortiz-Conde, B. A., Last, G. A., and Colwell, R. R.: 1986,Microbiol. Sci. 3, 171.Google Scholar
  24. Ninio, J.: 1983,Molecular Approaches to Evolution, Princeton University Press, Princeton, N.J.Google Scholar
  25. Sambrook, J., Fritsch, E. F., and Maniatis, T.: 1989Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor.Google Scholar
  26. Smith, J. M.: 1970,Nature 225, 563.Google Scholar
  27. Szeberenyi, J. and Apirion, D.: 1984,Biochim. Biophys, Acta 783, 15.Google Scholar
  28. Vandeyar, M., Weiner, M., Hutton, C., and Batt, C.: 1988,Gene 65, 129.Google Scholar
  29. Van Ryk, D. I., Lee, Y., and Nazar, R. N.: 1992,J. Biol. Chem. 267, 16177.Google Scholar
  30. Wallace, D. M.: 1987,Meth. Enzymol. 152, 33.Google Scholar
  31. Woese, C. R.: 1987,Microbiol. Rev. 51, 221.Google Scholar
  32. Wrede, P. and Erdmann, V. A.: 1975,FEBS Let. 33, 315.Google Scholar
  33. Yarus, M., Cline, S. W., Wier, P., Breeden, L., and Thompson, R. C.: 1986,J. Mol. Biol. 192, 235.Google Scholar
  34. Zagorska, L., Can Duin, J., Noller, H. F., Pace, B., Johnson, K. D., and Pace, N. R.:J. Biol. Chem. 259, 2798.Google Scholar
  35. Zoller, M. J. and Smith, M.: 1984DNA 3, 479.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Youn-Hyung Lee
    • 1
  • Lisa Dsouza
    • 1
  • George E. Fox
    • 1
  1. 1.Department of Biochemical and Biophysical SciencesUniversity of HoustonHoustonUSA

Personalised recommendations